AVANTI HOUSE SCHOOL, WHITCHURCH PLAYING FIELDS

Transport Assessment prepared on behalf of the Education Funding Agency

September 2015

AVANTI HOUSE SCHOOL, WHITCHURCH PLAYING FIELDS

Transport Assessment prepared on behalf of the Education Funding Agency

September 2015
MTP Ref: 14/042

Produced by

Milestone Transport Planning
7 Wey Court
Mary Road
Guildford
Surrey
GU1 4QU

Tel: 01483397888
Email: mail@milestonetp.co.uk

CONTENTS

1. INTRODUCTION. 1
2. APPLICATION SITE \& EXISTING USE 3
Site Information 3
The Proposal 3
Vehicular Access 5
3. POLICY CONTEXT 8
National Planning Policy Framework 8
London Plan (Further Alterations - 2015) 9
Harrow Council's Core Strategy (2012).9
Harrow Sustainable Transport Strategy (January 2013) 10
Scoping Discussions with London Borough of Harrow and the Greater London Authority 11
4. BASELINE CONDITIONS 12
Surrounding Highway Network 12
Highway Safety 13
Base Traffic Conditions 14
Pedestrian \& Cycle Accessibility 16
Public Transport Accessibility 19
PTAL 21
5. PROPOSED TRIP GENERATION \& DISTRIBUTION 23
Vehicle Trip Distribution 25
6. IMPACTS 28
Road Network 28
Pedestrian and Cycle Infrastructure 31
7. PARKING 33
Parking Provision 36
Provision for Pedestrians, Cyclists and Public Transport Users 37
Construction Period 38
Refuse Collection, Deliveries \& Servicing. 38
8. MITIGATION \& PLANNING OBLIGATIONS 40
Travel Plan Structure. 40
Travel Plan Initiatives 41
Off-Site Mitigation 43
9. SUMMARY \& CONCLUSIONS 47
Summary 47
Conclusions 47
TABLES
Table 2.1 Proposed School Start and Finish Times 4
Table 4.1 Whitchurch Lane / Honeypot Lane / Wemborough Road / March Lane - 2014 Surveyed Flows 15
Table 4.2 Whitchurch Schools Access / Wemborough Road - 2014 Surveyed Flows 16
Table 4.3 Wemborough Road / St Andrews Drive / Abercorn Road - 2014 Surveyed Flows . 16
Table 4.4 Direct Bus Services \& Frequencies 20
Table 4.5 Connecting Bus Services. 21
Table 5.1 Weekday Peak Hour Person Trip Generation - Proposed Uses (1,260 students) 25
Table 6.1 Whitchurch Lane / Honeypot Lane / Wemborough Road / Marsh Lane - 2020 Base29
Table 6.2 Whitchurch Lane / Honeypot Lane / Wemborough Road / Marsh Lane - 2020 Base

+ Development29
Table 6.3 Whitchurch Schools Access / Wemborough Road (Site Access) - 2020 Base. 30
Table 6.4 Whitchurch Schools Access / Wemborough Road (Site Access) - 2020 Base +
Development 30
Table 6.5 Wemborough Road / St Andrew's Drive / Abercorn Road - 2020 Base 31
Table 6.6 Wemborough Road / St Andrew's Drive / Abercorn Road - 2020 Base +
Development 31
Table 7.1 Surveyed Car Park Demand. 34
Table 8.1 LINSIG Output - '2020 Base + Development' (Proposed Junction Layout) 45

FIGURES

Figures 1.1-1.12 Site 1: Whitchurch Lane - Wemborough Road - Honeypot Lane - Marsh Lane [All Traffic Flow Scenarios]

Figures 2.1-2.12 Site 2: Whitchurch Schools - Wemborough Road [All Traffic Flow Scenarios]

Figures 3.1-3.12 Site 3: Abercorn Road - Wemborough Road - St Andrews Drive [All Traffic Flow Scenarios]

APPENDICES

Appendix $1 \quad$ Minutes of Scoping Meeting with Harrow Highways 13.01.15
Appendix 2 Transport Feedback from GLA Pre-Application Meetings
Appendix 3 Wemborough Road Parking Restrictions
Appendix 4 PIA Data
Appendix 5 MCC Surveys
Appendix 6 LINSIG Outputs: Whitchurch Lane - Wemborough Road - Honeypot Lane - Marsh Lane [All Scenarios - Existing Layout]

Appendix 7 PICADY Outputs: Whitchurch Schools - Wemborough Road [All Scenarios]
Appendix 8 ARCADY Outputs: Abercorn Road - Wemborough Road - St Andrews Drive [All Scenarios]

Appendix 9 PTAL Output
Appendix 10 2014/2015 Avanti House Secondary School Travel Plan
Appendix 11 TRICS Output
Appendix 12 TEMPRO Output
Appendix 13 PLSA Output
Appendix 14 Parking Beat Survey
Appendix 15 Parking Accumulation Analysis
Appendix 16 Proposed Junction Mitigation Layout Plan 14042-01
Appendix 17 Proposed Junction Mitigation Highway Boundary Plan 14042-02
Appendix 18 Proposed Junction Mitigation Swept Path Analysis Plan 14042-TK01
Appendix 19 LINSIG Outputs: Whitchurch Lane - Wemborough Road - Honeypot Lane - Marsh Lane ['Base + Development' - Proposed Mitigation Layout]

1. INTRODUCTION

1.1 This Transport Assessment (TA) has been prepared on behalf of the Education Funding Agency (EFA) in conjunction with the governors of Avanti House Free School (AHFS) to consider the highways and transport implications related to the development of a Secondary School on existing greenfield land at Whitchurch Playing Fields, Stanmore.

The purpose of this TA is to consider the implications of development related travel on the operation of the surrounding highway and transport networks. Furthermore this TA will consider the appropriateness of development in this location in transport policy terms, giving due regard to the need to ensure that it is accessible by all modes of travel.

The TA will demonstrate that in terms of Planning Policy at both National and Local level with respect to issues such as sustainability and traffic impact, the application site is more than capable of accommodating the proposed level of development.

On this basis Section 2 of the TA considers the application site's existing conditions and details of the proposed development including vehicular access.

The policy context within which the development proposals should be assessed from a highways and transport perspective will be detailed in Section 3.

Section 4 of the TA considers baseline conditions related to the application site including a review of pedestrian and cycle accessibility, public transport accessibility, the surrounding highway network, highway safety records and base traffic conditions.

An exercise to consider the level of trip generation of the proposed development, the modal share of such trips and their distribution onto the surrounding highway and transport networks are considered in Section 5 of the TA.

Section 6 of the TA considers, in detail, the impacts of the proposed development on the local road network as well as existing transport routes in the vicinity of the site.

Section 7 details parking provision and a parking accumulation assessment. This section also includes details of the Construction Management Plan and Deliveries \& Servicing Plan.
1.11 Any mitigation required to overcome the impacts of the proposed development is considered in Section 8 of the TA. Within this section details are provided of measures to be put in place by AHFS, through the Travel Plan process, to manage trips generated by the school so as to minimise impact on the local community.

Finally Section 9 provides a summary and conclusion to the TA.

2. APPLICATION SITE \& EXISTING USE

Site Information

The application site is located on existing greenfield land at Whitchurch Playing Fields which is situated to the north of Wemborough Road and the east of Abercorn Road in a predominately residential area. Directly to the south-east of the site is Whitchurch First and Junior Schools which have recently been granted planning permission for expansion from 695 to 905 pupils to reach full capacity in September 2020. The application site location in relation to the surrounding area is shown at Figure 1.

Figure 1 Application Site Location

The Proposal

As noted in Section 1, the proposed AHFS plans to take occupation of the site from September 2017. The school will see an annual intake of 180 per annum until full occupation of 1,260 pupils plus 120 FTE staff. The school will provide secondary education for Year 7-11 inclusive in addition to sixth form.

School opening hours will be 07:00-17:30 and include a comprehensive range of pre and post-school activities including a breakfast club and additional education / training and sporting activities after school which will operate on a daily basis. In addition to the separate start / finish times by key stage, this will result in staggering the start and finish times of the school, as detailed below.

Table 2.1 Proposed School Start and Finish Times

Time	Activity	No. Pupil Arrivals / Departures
Morning		Breakfast Club
07:00-08:00	Key Stage 4 Registration	60
$07: 45$	Key Stage 3 Registration	320
$08: 15$	Key Stage 5 Registration	520
$09: 45$	Official KS3 \& KS4 end of day	340
Evening	KS3/KS4 After School Clubs end	500
$15: 45$	Official KS5 end of day	360
$16: 45$		
$17: 30$		

2.4 Indeed it is the case that the majority of both staff and students of AHFS will be arriving and departing at different times to those of the network peak and the neighbouring Whitchurch Schools, which operate start times of 08:45/08:55 and finish times of 15:15/15:20. It is also the case that the arrival / departures times of the proposed school will be during the AM and PM 'shoulder' peak periods on the wider highway network thereby minimising the impact of school-related trips on the operation of the surrounding highway and transport networks.

It should be noted that the 2014/2015 Year 7-9 pupil home locations were not focused around the school site located on Common Road. It is in fact the case that the catchment of the 2014/2015 Year 7-9 pupils was centred more around the Whitchurch playing fields site providing considerable opportunity for existing and prospective pupils to walk and cycle to school. Figure 2 illustrates the 2014/2015 Year 7-9 pupil's home postcode locations, and also shows the location of the previous school site (as vacated July 2015), temporary school site on Beaulieu Drive, Pinner (to be occupied by the school over the 2015-2017 academic years) and the permanent proposed school site at Whitchurch playing fields.

Figure 2 2014/2015 Year 7-9 Pupil Home Locations

Whilst a significant proportion of students within the catchment area will be able to use a public bus service, or combination of bus services to travel to school, it is proposed to supplement this with a private school operated bus service. Further details of the school bus service are provided in Section 8 of the TA.

Vehicular Access

The existing playing fields on the proposed development site, and the Whitchurch First and Junior Schools southeast of the site are accessed from Wemborough Road via separate entry and egress simple priority junctions, and thereafter a shared access way. The egress onto Wemborough Road is provided with segregated left and right turn lanes.
2.8 With regard to the future vehicular access arrangements, upon occupation of the site by AHFS, it is proposed to utilise the existing priority junction arrangement and shared access way from Wemborough Road into the site for deliveries / servicing and staff access only. Delivery movements will be restricted to times away from the start and finish of the school day and outside of network 'peak' hours. It is understood that any modifications required to the access way to facilitate the movement of larger vehicles to and from the school, will be subject to agreement with Harrow Council Highways, Planners and Corporate Estates departments.
2.9

Further to the scoping meeting held with Harrow Council Highways on 13 January 2015, it was considered that vehicular set-down / pick-up trips were most likely to be undertaken in the public car park to the south of the school. On this basis, a parking beat survey was undertaken at the car park during the typical AM and PM drop-off / pick-up periods on 20 January 2015. The results of this parking survey with analysis of available parking supply and demand generated by the AHFS proposals are presented in Section 7 of this TA. It should be noted that 'committed' parking demand associated with the expansion of the Whitchurch First and Junior Schools has been taken into account in these calculations.

Figure 3 shows the proposed security and access arrangements for AHFS. These arrangements will be supported by signage and road markings, as appropriate. The strategy will also be embodied within the School's Travel Plan and Delivery / Servicing Plan such that all end users will be made aware of the arrangements to be put in place. It should be noted that the pedestrian access point off Wemborough Road will act as the sole point of access on foot.

Figure 3 Site Layout, Security \& Access Arrangements

2.11 Through the public consultation process it has been noted that there has been support for the concept of a vehicular access way from Marsh Lane, creating a route through to Wemborough Road. It has been suggested that such a route could operate as one way with entry from Marsh Lane, drop-off / pick-up outside the school, and exit onto Wemborough Road.

This concept has been discussed with Harrow Highways on numerous occasions, who have raised a number of highway safety and capacity based concerns as identified below:

- By providing an alternative access route it would only encourage car trips;
- The new junction would be too close to the existing signalised crossroads and could cause conflict in respect of vehicles queuing back from the signals and blocking the school access junction;
- It could encourage 'rat-running' to avoid the signalised crossroads;
- Marsh Lane is the key distributor route in the area and any new access points are generally resisted;
- Even if it is a vehicular route parents might choose to drop-off / pick-up on Marsh Lane which raises safety issues with vehicles stopped on a busy route and children potentially crossing between stopping / queuing cars;
- Such an arrangement would be difficult to police, if as suggested, the route only operated for certain periods of the day.
2.13 In respect of providing a pedestrian only access at this location the last point would remain a concern for the Highway Authority, given that parents would be likely to drop-off on Marsh Lane in the AM peak and potentially wait for their children to finish school during the PM peak period. Such behaviour could also be disruptive to traffic flow and the operation of the signal junction to the south.

For the reasons outlined above Harrow Council Highways would not support any form of access to the school from Marsh Lane.

3. POLICY CONTEXT

3.1 An important consideration of the promotion of the proposed development is to highlight the guidance given with respect to transport policies at both National and Local Government level. In overall terms, planning policy seeks to achieve a balance by integrating land use and transport policy to create more sustainable development by appropriate location and design.

National Planning Policy Framework

3.2 The National Planning Policy Framework (NPPF) published in March 2012. Within the core planning principles as highlighted in para. 17 of the NPPF it states that planning should "...actively manage patterns of growth to make the fullest possible use of public transport, walking and cycling, and focus significant development in locations which are or can be made sustainable..."
3.3 Section 4 of the NPPF continues on the theme of promoting sustainable transport. In para. 29 it highlights the role that transport policies have in contributing to wider sustainability and health objectives, citing smarter use of technologies and giving people real choice about how they travel as playing a key role in this regard. Para. 29 also recognises that different policies and measures to promote sustainable transport will apply and vary between rural and urban communities.
3.4 Para. 32 of the NPPF requires developments that generate significant amounts of movement to be supported by a Transport Statement of Transport Assessment. Within such documentation there is a requirement to ensure that:

- opportunities for sustainable transport modes have been taken up;
- safe and suitable access to the site can be achieved for all people; and
- cost effective improvements can be made, if required, to the limit the significant impacts of development.
3.5 Para. 32 goes on to state that "...development should only be prevented or refused on transport grounds where the residual cumulative impacts of development are severe."
3.6 Paragraph 35 of the NPPF states that "Plans should protect and exploit opportunities for the use of sustainable transport modes for the movement of goods or people..." It goes on to state that where practical developments should be located and designed to:
- "accommodate the efficient delivery of goods and supplies;
- give priority to pedestrian and cycle movements, and have access to high quality public transport facilities;
- create safe and secure layouts which minimise conflicts between traffic and cyclists or pedestrians, avoiding street clutter and where appropriate establishing home zones;
- incorporate facilities for charging plug-in and other ultra-low emission vehicles; and
- consider the needs of people with disabilities by all modes of transport."
3.7 Para. 36 of NPPF suggests that a key tool to achieving the goals as set out in para. 35 is through Travel Plans.
3.8 Para. 37 of NPPF recommends that "Planning policies should aim for a balance of land uses within an area so that people can be encouraged to minimise journey lengths for employment, shopping, leisure, education and other activities."

London Plan (Further Alterations - 2015)

Within the latest version of the London Plan (March 2015) the Mayor outlines his key policy objectives. Chapter 6 of the London Plan, entitled 'London's Transport', recognises that transport plays a fundamental role in addressing the whole range of the Mayor's spatial, environmental, economic and social policy priorities. The Mayor will work with all relevant partners to encourage the closer integration of transport and development and by:

- "..encouraging the patterns and nodes of development that reduce the needs to travel, especially by car;
- ..seeking to improve capacity and accessibility of public transport, walking and cycling, particularly in areas of greatest demand
- ...supporting development that generates high levels of trips at locations with high public transport accessibility and / or capacity, either currently or via committed funded improvements
- ...promoting walking by ensuring an improved public realm...."

Harrow Council's Core Strategy (2012)

The Core Strategy, adopted 12 February 2012, is a key part of Harrow's Local Plan, and sets out the Borough's strategic approach to managing growth and development to 2026.
3.11 Within the Core Strategy, there are a number of objectives which relate to transport:

- "enhance the infrastructure, environment and other resources which make Harrow a desirable place to live, work and visit by improving sustainable transport capacity, accessibility and quality to meet users' needs and expectations;
- manage the Borough's contribution to climate change by co-ordinating development and public transport to promote more sustainable patterns of land use to reduce reliance on private vehicles;
- adapt to population and demographic changes to meet people's needs and quality of life by promoting walking, cycling and participation in sport by all ages."
3.17 Harrow cycling policies C1 and C4 set out the aim to provide cycle training for adults and children, in particular to facilitate cycle trips to and from school.
3.18 Harrow walking policies W1 and W3 set out the council's aspiration to encourage school walking buses and in general promote walking as a transport mode as a viable alternative to motorised travel.
3.19 Harrow travel planning policies 1-10 reference the importance of developing school Travel Plans, encouraging sustainable and healthy travel choices that are deliverable and secured via TfL's accreditation criteria.

Harrow public transport policies target working in partnership with TfL to deliver services that meet the demands of school travel, making public transport an attractive and viable method of transport for students, staff and visitors.

Scoping Discussions with London Borough of Harrow and the Greater London Authority

3.21 An initial meeting was held with Harrow Council Highways on 12 May 2014, through which a scope of junction surveys was identified. Subsequent to this, a Pre-Application meeting was held with Council Planners on 19 December 2014 and a more detailed scoping meeting with Harrow Council Highways on 13 January 2015 - the minutes of which (as agreed with Harrow Highways) are provided at Appendix 1.
3.22 A meeting was held to review draft Transport Assessment and Travel Plan documents with Harrow Council Highways on 4 August 2015. This was followed by a Pre-Application meeting with all Harrow Council planning disciplines on 12 August 2015. These most recent meetings have focused on the scope and delivery of junction improvement proposals at the signalised crossroads to the east of the site.

Pre-Application meetings were held with the GLA on 19 March 2015 and 30 June 2015 with transport comments provided by the GLA from both meetings set out at Appendix 2.

4. BASELINE CONDITIONS

Surrounding Highway Network

4.1 Wemborough Road is a two-way residential road which forms a crossroad junction with Marsh Lane (A4140) / Whitchurch Lane (B461) / Honeypot Lane (A414) to the east and a 4-arm roundabout with Abercorn Road / St. Andrew's Drive to the west. To the east of the signal junction is Canons Park Underground Station and to the north Stanmore Underground Station.
4.2 St Andrew's Drive has no on-street parking restrictions except within the vicinity of the roundabout. Abercorn Road is subject to on-street parking restrictions within the vicinity of the roundabout and the Stanburn Primary School access, with single yellow line parking restrictions present on the southbound side of the carriageway operational Monday-Friday 0800-0930 \& 1500-1630.
4.3 Wemborough Road is the subject of a 30 mph speed limit which continues along St. Andrew's Drive, Abercorn Road, Marsh Lane and Whitchurch Lane. The road has a vehicular weight restriction of 7.5T expect for access.
4.4 Honeypot Lane (A4140), a dual carriageway, is subject to a 40 mph speed limit and is provided with grass verges between the footway and both the north and southbound carriageways. Both Honeypot Lane (A4140) and Marsh Lane to the north of the crossroad junction are subject to double yellow line parking restrictions.
4.5 Whitchurch Lane (B461) is subject to double yellow line restrictions for an approximate distance of 500 m east of the crossroad junction and thereafter single yellow line restriction apply. Wemborough Road forms three priority junctions with Gyles Park, Bush Grove and Bromfield. Bush Grove and Bromfield are subject to single yellow line parking restrictions Monday - Friday 1400-1500 whereas Gyles Park has no on-street parking restrictions.
4.6 North of the development site, Old Church Lane connects with other neighbouring residential streets and cul-de-sacs including Cranmer Close and Lansdowne Road.
4.7 Wemborough Road is subject to recently implemented single yellow line parking restrictions, save for the pedestrian crossings and bus stops outside the school entrance. These were introduced following the Canons Park Area parking review (see Appendix 3). Restrictions are operational Mon-Fri, 2-3pm, aiming to reduce parking congestion created by commuters using Canons Park LU Station.
4.8

On-street parking bays are located outside Canons Park shopping parade which specifies restrictions Monday - Saturday 0800-1830. Parking is free for permit holders or pay and displays machines are available for a maximum stay of 2 hours. Single yellow restrictions apply Monday - Saturday 1000$1100 \& 1400-1500$ at this location also.

To the north of the application site, Marsh Lane junctions with London Road and The Broadway. London Road provides access to the M1 via the A41 and the Broadway provides access to north Stanmore and further north towards Watford.

Highway Safety

To enable review of the road safety record of the road network in the immediate vicinity of the application site, Personal Injury Accident (PIA) data has been secured from Transport for London (TfL) for a 5 -year period up to the end of November 2013. Full details of the PIAs together with a location map are included as Appendix 4 to the TA and illustrated in Figure 4.
4.11 From the data supplied by TfL it can be seen that there have been 48 recorded PIAs of which 46 have been classified as 'slight' and two as 'serious'. The 'slight' incidents were attributed to reasons including pedestrians crossing at inappropriate times or locations, rear vehicles shunts, vehicles turning right into the path of oncoming traffic and careless driving.

The two PIAs classified as 'serious' were attributed to a vehicle pulling out into the path of an oncoming vehicle and a rear end shunt caused by sudden braking. These incidents occurred along Whitchurch Lane close to the junction with Donnefield Avenue and Honeypot Lane crossroad junction respectively and thus not in the immediate vicinity of the proposed site.

Figure 4 PIA Location Map

Of the 48 PIAs, 16 involved pedestrians and of these less than half involved children. The reasons for the incidents were attributed to pedestrians' inappropriate use/failure to use crossing facilities, attempting to cross between parked cars, failure to look properly and carelessness. Only one PIA occurred along Wemborough Road which involved a child.

Three incidents occurred in the vicinity of the site access junction. The first incident involved a pedestrian crossing between parked cars and failure to use crossing facilities. The second incident involved a vehicle losing control and driving into a stationary vehicle and the final incident occurred as a result of a vehicle pulling into the path of cyclist which was attributed to failing to look properly.

In the context of the PIAs identified, and in particular those occurring at the signal junction to the east of the site, potential mitigation measures have been considered within Section 8 of this report.

Base Traffic Conditions

In order to determine baseline traffic operational conditions on the road network in the vicinity of the application site, in discussion with Harrow Council Highways on $12^{\text {th }}$ May 2014 assessment has been undertaken on the following junctions which are illustrated in Figure 5 below:

- Whitchurch Lane / Honeypot Lane / Wemborough Road / Marsh Lane signalised crossroads;
- Whitchurch Schools Access / Wemborough Road priority junction (Site Access); and
- Wemborough Road / St Andrews Drive / Abercorn Road roundabout.

Figure 5 Junction Assessment Location Plan

4.17
4.18

Manual Classified Turning Movement (MCC) surveys were undertaken on all junctions identified above on Wednesday $18^{\text {th }}$ June 2014 conducted over the AM peak periods, 07:00-10:00 and the PM peak period 16:00-19:00. A copy of the MCC surveys is included as Appendix 5 and details of the peak hour turning movements are appended to this report.

Tables 4.1 - 4.3 provides summaries of the ARCADY, PICADY and LINSIG outputs that assess the operational conditions of these three junctions during the AM and PM peak hours. The results of each analysis are included at Appendices 6-8 respectively. It should be noted that the 'peak hour' periods used for analysis are centred around the KS3 start / finish times for the Avanti House School, on the basis that these are the periods during which the school will generate the most vehicle trips. The AM peak period is 0745-0845, whilst the PM peak period is 1615-1715. Traffic flow diagrams for the 2014 surveyed AM and PM peak scenarios are provided at Figures 1.1-1.2, 2.1-2.2 and 3.1-3.2 for each junction respectively.

Table 4.1 Whitchurch Lane / Honeypot Lane / Wemborough Road / March Lane - 2014 Surveyed Flows

Arm	AM Peak Hour		PM Peak Hour	
	DoS	Queue	DoS	Queue
Whitchurch Lane Left Ahead	81.1\%	12.7	72.3\%	11.0
Whitchurch Lane Right	55.2\%	1.8	41.0\%	1.7
Honeypot Lane Left Ahead	84.5\%	10.3	78.0\%	9.9
Honeypot Lane Right Ahead	85.4\%	11.0	79.8\%	11.2
Wemborough Road Left Ahead	84.0\%	14.1	67.9\%	10.4
Wemborough Road Right	79.7\%	3.6	75.8\%	4.6
Marsh Lane Left Ahead	84.0\%	10.8	75.3\%	6.8
Marsh Lane Right Ahead	85.6\%	12.2	77.2\%	7.7

Table 4.1 shows that the under its existing highway layout the signalised junction operates within overall capacity, and with degrees of saturation of less than 90% across all approach arms. The greatest levels of queuing are present on the Whitchurch Lane and Wemborough Road approach arms in the AM peak, and on the Whitchurch Lane and Honeypot Lane approach arms in the PM peak.

Table 4.2 Whitchurch Schools Access / Wemborough Road - 2014 Surveyed Flows

Arm	AM Peak Hour Max RFC		Queue	PM Peak Hour	
Max RFC	Queue				
Whitchurch Schools LT	0.079	0.1	0.037	0.0	
Whitchurch School RT	0.131	0.1	0.110	0.1	
Wemborough Road	0.202	0.5	0.059	0.1	

4.21 From Table 4.3 it can be seen that under its existing highway layout the junction operates within capacity during both the AM and PM peak periods, with the most notable queuing on the Abercorn Road approach arm in the AM peak and Wemborough Road (E) approach arm during the PM peak.

Pedestrian \& Cycle Accessibility

4.22 The Chartered Institution of Highways and Transportation document 'Guidelines for Providing for Journeys on Foot' state that "walking accounts for over a quarter of all journeys and four fifths of journeys less than one mile". The document also provides guidance on acceptable walking distances and suggests that a preferred maximum walking distance of 2 km is applicable for school trips. In relation to cycling, it is also recognised that this mode also has the potential to substitute short car journeys particularly those less than 5.0 kilometres. Figure 6 below illustrates the 2.0 km walking and 5.0 km cycling catchment areas of AHFS.
4.23 Wemborough Road is provided with lit footways on both sides of the carriageway and approximately 10 metres from the main site entrance is a pelican crossing across Wemborough Road. Existing school signage and carriageway markings are present alerting drivers to the fact that children will be crossing the road.
$4.24 \quad$ Pedestrian infrastructure within the vicinity of the site is of a good standard with pedestrian crossing points present along key pedestrian desire lines and the local footway network provided with lit footways. Abercorn Road to the west of the site benefits from three pedestrian crossing points.
4.25 The 4-arm roundabout to the west of the site benefits from pedestrian crossing zones, with either zebra crossing facilities or pedestrian refuge islands and tactile paving on all arms of the junction.
4.26 Located to the east of the site is a signalised crossroad junction linking Marsh Lane / Whitchurch Lane (B461) / Honeypot Lane (A4140) / Wemborough Road which benefits from pedestrian crossings with tactile paving and pedestrian refuge islands on all arms of the junction. Honeypot Lane is provided with staggered signalised pedestrian crossing facilities.
4.27 It will be demonstrated in Section 6 of this TA that the footways surrounding the site access are capable of absorbing existing foot traffic and that associated with the school proposals and expansion of the neighbouring Whitchurch Schools.

Figure 6 Potential Walk \& Cycle Catchment

Figure 7 shows an extract of the local TfL cycle guide from which is can be seen that there is a network of signed and recommended routes for cyclists within the vicinity of the proposed school. Wemborough Road benefits from dedicated on-road cycle lanes as does Marsh Lane.

Whitchurch Lane benefits from on-road cycle markings (diag. 1057) alerting drivers to the presence of cyclists. A dedicated cycle lane is present along the eastbound side of the carriageway approximately 160 metres from the signalised junction.
4.30 It is noted that proposals will be coming forward for the implementation of the 'Jubilee Line Quietway' cycle route, which, in the vicinity of the site, will run north-south along Honeypot Lane / Marsh Lane. This proposal will likely be implemented prior to the occupation of the school, and will therefore offer additional dedicated cycle connectivity between the school and its immediate catchment.
4.31 Where dedicated cycle routes are not present, carriageway widths are wide enough to accommodate both cyclists and vehicles and visibility is generally of a good level aiding inter-visibility between cyclists and vehicles.

Figure 7 Local Cycle Routes

Within Figure 7, yellow routes denote quieter roads that have been recommended by other cyclists and may connect to other route sections. Blue routes are signed or marked for use by cyclists on a mixture of quite or busier roads and green routes are off-road routes which may also be shared with pedestrians. The full map can be found in the TfL Local Cycle Guide 3.

Public Transport Accessibility

Bus Services

4.33 The nearest bus stops to the application site are located on Wemborough Road, the closest being 250 m west of the pedestrian entrance to the school. The bus stops further west are provided with bus shelters, seating, timetable information, with the exception of Stop BL which is not provided with sheltering. The stops are served by route 186 .

To the east of the site, services 79,186 and 340 stop regularly along Whitchurch Lane (B461) and benefit from shelters, seating and timetable information. The walking route from the school to the bus stops on the south side of Whithchurch Lane is via two sets of controlled crossing facilities.
4.35 The most direct route to the stops on the north side of Whitchurch Lane requires pedestrians to use the uncontrolled crossing over Marsh Lane. Investigation has been undertaken within Section 8 of this report as to whether a signalised crossing facility could be delivered at this location. An overview of connectivity between the school site and the nearest bus stops is provided at Figure 8 below.

Figure 8 Pedestrian Connectivity to Local Bus Stops

4.36 The closest bus stop for Route N98 is located 480 m south of the site on Honeypot Lane and is provided with a bus shelter, seating and timetable information.
4.37 Abercorn Road, west of the school, links bus service 324 which stops approximately 420 metres from the school entrance. The service runs between Stanmore London Underground (LU) Station and Brent Cross via Kingsbury. The walking route is provided with a zebra crossing at the roundabout, south on Abercorn Road.
4.38 A summary of the weekday daytime operations of these bus services is provided in Table 4.4.

Table 4.4 Direct Bus Services \& Frequencies

Route No.	Nearest Bus Stop	Route	Frequency
186	250 metres	St Mark's Hospital-Harrow-Edgware-Brent Cross	Every 12 minutes
79	260 metres	Edgware-Honeypot Lane-Alperton	Every 12 minutes
340	260 metres	Edgware-Stanmore-Harrow	Every 12 minutes
324	420 metres	Stanmore-Kingsbury Station-Brent Cross	$3 \mathrm{p} / \mathrm{hr}$
N98	480 metres	Stanmore-Willesden-Edgware-Holborn	$4 \mathrm{p} / \mathrm{hr}$

The bus routes set out in Table 4.4 will provide a direct route to the proposed school for a good proportion of prospective students. Table 4.5 identifies additional connecting bus services which will allow access from other home locations with North London, particularly around the Enfield / Bush Hill Park or Cockfosters areas.

Table 4.5 Connecting Bus Services

Route No.	Route	Connecting At	Connecting Route No.	Frequency
32	Edgware-Cricklewood-Kilburn	High Street (A5)	$79 / 186 / 340$	Every 20 minutes
142	Watford-Bushey-Brent Cross	High Street (A5)	$79 / 186 / 340$	Every 12 minutes
204	Edgware-Wembley Central Station-Sudbury	High Street (A5)	$79 / 186 / 340$	Every 10 minutes
288	Queensbury-Edgware Bus Station-Broadfields	High Street (A5)	$79 / 186 / 340$	Every 10 minutes
292	Borehamwood-Barnet Way- Colindale	High Street (A5)	$79 / 186 / 340$	Every 15 minutes
644	Hatfield-Barnet-Edgware- Wembley Park Station	High Street (A5)	$79 / 186 / 340$	Every 30 minutes

4.40 It can be seen that these connections offer students the opportunity to travel from their home from a variety of locations to the school by public transport, i.e. 'door to door' in a maximum journey time of 45 minutes.

Rail Services

4.41 The nearest rail / London Underground station to the proposed school is Canons Park, approximately 600 metres (10 minute walk-time) to the east. Canons Park is operated by London Underground on the Jubilee Line located between Stanmore to the north and Queensbury to the south. A service is provided every 5 minutes and bus routes 79,186 and 340 stop outside the station.
4.42 Edgware Station (London Underground) is the northern terminus on the Northern Line, approximately 2.4 km from the proposed site and is also served by bus services 79,186 and 340 . Services arrive in Edgware every 12 minutes.

PTAL

4.43 PTAL or Public Transport Accessibility Level is a widely adopted tool amongst London Authorities for measuring a sites' accessibility. The PTAL methodology identifies the key factors that influence personal choice of a public transport mode as being, number of accessible services, walk distances, frequency, reliability and time of day / day of week. On the basis of these factors, a formula has been developed to calculate an Accessibility Index (AI) for any given location.

In overall terms, whilst the PTAL value for the site is low, the accessibility of the application site by public transport offers a range of alternative travel choices to both student and staff and there are a wide range of journey origins and destinations can be reached by the bus and underground networks.

5. PROPOSED TRIP GENERATION \& DISTRIBUTION

5.1 The AHFS will generate person trip movements by all modes of travel throughout a weekday period and in particular the AM and PM peak periods. The AHFS will provide a comprehensive range of preand post- school activities including a breakfast club and additional education / training and sporting activities after school. The effect of these activities will be to stagger arrivals and departures (in addition to the staggered start / finish times by key stage) thereby reducing the potential impact of person trips generated by the AHFS on the local area and transport networks.
5.2 In respect of modal split information, the existing AHFS School Travel Plan (albeit for their previous location at Common Road) contains hands-up survey information undertaken to determine children's methods of travel to school. The School Travel Plan is provided at Appendix 10.
5.3 It is however noted, that the location of the school at the time on Common Road, was less accessible to public transport, pedestrian and cycle routes in comparison to the Whitchurch Fields site. The Common Road site was also not as central to the school catchment as the Whitchurch Fields site (2014/2015 Year 7-9 catchment illustrated in Section 2). It is therefore considered that the use of TRICS data for Secondary School provides a more accurate idea of children's method of travel to and from the Whitchurch site, as well as deriving trip rates.

Table 5.1 provides a summary of weekday peak hourly person trip rates and resultant movements by mode of travel for the proposed uses on the site based on the full occupation scenario, as described above. Whilst it is noted that the site may be used for 'out of hours' leisure activities, in the context of school trip generation, these trips will be minimal and will occur outside of network peak periods.
5.5 The original trip rates (as agreed with Harrow Council Highways) have been modified to reflect comments provided by the GLA. Through the revised selection of TRICS survey sites (discounting schools from outside London) a trip generation profile has been generated that maintains a similar level of car based trips whilst re-dressing the balance of trips by sustainable modes to reflect a greater proportion of public transport users. A copy of the TRICS output is provided at Appendix 11.
5.6 It should be noted that on the basis of the school providing a dedicated bus service to transport c. 150 children in the AM and PM peak periods (one run for each key stage), the school bus has been included as an additional travel mode with the pedestrian mode discounted accordingly in order to maintain consistent total two-way trips rates and movements.
5.7 In respect of pedestrian trips in particular, Harrow Council Highways advised that any modal split assumptions should be substantiated by first principles information. In this regard, Figure 9 below illustrates the proportion of 2014/2015 academic year pupils living within 1200 m of the school (c. 20 minute walk time) and that could therefore reasonably walk to the school.

From the 2014/2015 pupil postcode locations shown at Figure 9, it is illustrated that approximately 80 of 320 pupils lived within a 20 minute walk of the school. This amounts to 25% of the school population at that time. On the basis that when the school is relocated to Whitchurch Playing Fields it will attract more pupils from its proximity, and taking into account the likelihood that as the school grows there are more likely to be siblings able to walk together to school, it is not considered unreasonable to expect an increase in pedestrian trips to c. 30-35\% as indicated in the TRICS output at Table 5.1.

Figure 9 Pupils Living within 1.5km of Proposed School Site

Table 5.1 Weekday Peak Hour Person Trip Generation - Proposed Uses (1,260 students)

Mode of Travel	AM Peak (0800-0900hrs)			PM Peak (1500-1600hrs)		
	Two-Way Trip Rate (per pupil)	Mode Split	No. Movements	Two-Way Trip Rate (per pupil)	Mode Split	No. Movements
	0.168	21.7%	212	0.075	8.7%	95
Cyclists	0.008	1.0%	10	0.008	0.9%	10
Pedestrians	0.246	31.8%	310	0.299	34.7%	377
Public Transport	0.233	30.1%	294	0.360	41.8%	454
School Bus	0.119	15.4%	150	0.119	13.8%	150
TOTALS	$\mathbf{0 . 7 7 4}$	$\mathbf{1 0 0 . 0 \%}$	$\mathbf{9 7 6}$	$\mathbf{0 . 8 6 1}$	$\mathbf{1 0 0 . 0 \%}$	$\mathbf{1 0 8 6}$

From Table 1 it can be seen that the proposed uses on site have the potential to generate between 976 and 1086 total person trips during the weekday AM and PM peak periods. Of these some 95-212 are car borne trips, equating to a modal share of some $9-22 \%$. Of the remainder of these trips, the number of public transport users equates to around $30-42 \%$, cyclists 1% and pedestrians between 32$35 \%$. The impact of development related trips is considered in Section 6 of this Transport Assessment.

Vehicle Trip Distribution

5.10 In consultation with Harrow Council Highways it is proposed to distribute school-related traffic using the home postcode information for the neighbouring Whitchurch Schools. Pupil postcode plots for the Whitchurch School have been obtained from their Travel Plan, and origin / destination 'zones' derived based on shortest driven routes from the school access point. Figure 10 illustrates the designation of zones and percentage of Whitchurch School pupils drawn from each.

Figure 10 Derivation of Traffic Distribution from Whitchurch Schools Home Postcode Data

The resultant distribution of traffic by percentage through the site access junction and roundabout / signal junctions to the west and east is shown at Figure 11, and used thereafter within the appended traffic flow figure diagrams for the distribution of 'committed development' relating to the expansion of the Whitchurch Schools, and traffic associated with the AHFS proposals.

Figure 11 Distribution of School Related Traffic

6. IMPACTS

Road Network

6.4 The distribution of development traffic has been based on the methodology as identified in Section 5 of this TA. On the basis of the distribution of development traffic, the three junctions referred to in Section 4 have been tested for operational capacity to consider the traffic impact of the development on the local highway network.

Whitchurch Lane / Honeypot Lane / Wemborough Road / Marsh Lane Signal Junction

6.5

Tables 6.1 and 6.2 provides a summary of the LINSIG outputs that assess the 2020 'Base' and 'base + development' flows of the proposed school during the weekday AM and PM peak periods. These flows are also illustrated in appended Figures 1.3 -1.12. The results of the LINSIG analysis are included as Appendix 6.

Table 6.1 Whitchurch Lane / Honeypot Lane / Wemborough Road / Marsh Lane - 2020 Base

Arm	AM Peak Hour		PM Peak Hour	
	DoS	Queue	DoS	Queue
Whitchurch Lane Left Ahead	83.5\%	14.1	74.7\%	12.1
Whitchurch Lane Right	69.2\%	2.2	47.9\%	1.9
Honeypot Lane Left Ahead	97.8\%	16.5	89.4\%	13.0
Honeypot Lane Right Ahead	98.1\%	17.5	90.5\%	14.5
Wemborough Road Left Ahead	89.4\%	17.3	73.4\%	12.0
Wemborough Road Right	101.7\%	9.6	93.0\%	7.9
Marsh Lane Left Ahead	96.6\%	16.6	91.2\%	10.2
Marsh Lane Right Ahead	97.4\%	18.4	92.2\%	11.3

Table 6.2 Whitchurch Lane / Honeypot Lane / Wemborough Road / Marsh Lane - 2020 Base + Development

Arm	AM Peak Hour		PM Peak Hour	
	DoS	Queue	DoS	Queue
Whitchurch Lane Left Ahead	82.1\%	14.4	72.8\%	11.9
Whitchurch Lane Right	60.8\%	1.9	51.9\%	1.9
Honeypot Lane Left Ahead	110.1\%	32.0	94.4\%	15.3
Honeypot Lane Right Ahead	110.3\%	34.3	95.2\%	17.0
Wemborough Road Left Ahead	87.4\%	16.9	76.4\%	13.2
Wemborough Road Right	104.5\%	11.5	97.9\%	10.3
Marsh Lane Left Ahead	108.1\%	31.6	91.9\%	10.5
Marsh Lane Right Ahead	108.6\%	34.8	93.0\%	11.6

6.6

From Tables 6.1 and 6.2 it can be seen that under Year 2020 'base + development' traffic flow conditions the signalised crossroad junction will continue to function above overall capacity, when compared with 2020 'base' conditions. Honeypot Lane and Wemborough Road approach arms will experience the highest degrees of saturation and queuing, particularly during the AM peak periods. It should nevertheless be noted that in reality, pupils arriving by car will be spread between 07:00 and 09:45 rather than concentrated into a single hourly period, and therefore to some degree the traffic impact is overstated.

Whitchurch Schools Access / Wemborough Road (Site Access) Priority Junction

6.7 Tables 6.3 and 6.4 provide a summary of the PICADY outputs that assess the 2020 'Base' and 'base + development' flows of the proposed school during the weekday AM and PM peak periods. These flows are also illustrated in Figures 2.3-2.12. The results of the PICADY analysis are included as Appendix 7.

Table 6.3 Whitchurch Schools Access / Wemborough Road (Site Access) - 2020 Base

Arm	AM Peak Hour Max RFC		Queue	PM Peak Hour	
	Max RFC	Queue			
Whitchurch Schools LT	0.207	0.3	0.152	0.2	
Whitchurch School RT	0.363	0.6	0.322	0.5	
Wemborough Road	0.400	1.2	0.245	0.7	

Table 6.4 Whitchurch Schools Access / Wemborough Road (Site Access) - 2020 Base + Development

Arm	AM Peak Hour Max RFC		Queue	PM Peak Hour	
	Max RFC	Queue			
Whitchurch Schools LT	0.295	0.4	0.274	0.4	
Whitchurch School RT	0.502	1.0	0.410	0.7	
Wemborough Road	0.793	5.7	0.282	0.8	

From Table 6.4 it can be seen that under Year 2020 'base + development' traffic flow conditions the priority junction will continue to function within capacity and with queues that can be accommodated within the available road space.

Wemborough Road / St Andrew's Drive / Abercorn Road Roundabout

Tables 6.5 and 6.6 provide a summary of the ARCADY outputs that assess the 2020 'Base' and 'base + development' flows of the proposed school during the weekday AM and PM peak periods. These flows are also illustrated in Figures 3.3-3.12. The results of the ARCADY analysis are included as Appendix 8.

Table 6.5 Wemborough Road / St Andrew's Drive / Abercorn Road - 2020 Base

Arm	AM Peak Hour		PM Peak Hour	
	Max RFC	Queue	Max RFC	Queue
Wemborough Road (E)	0.870	6.1	0.980	16.1
St Andrew's Drive	0.690	2.1	0.790	3.4
Wemborough Road (W)	0.730	2.7	0.760	3.0
Abercorn Road	0.900	7.7	0.790	3.6

Table 6.6 Wemborough Road / St Andrew's Drive / Abercorn Road - 2020 Base + Development

Arm	AM Peak Hour		PM Peak Hour	
	Max RFC	Queue	Max RFC	Queue
Wemborough Road (E)	0.890	6.8	1.000	21.3
St Andrew's Drive	0.720	2.5	0.800	3.6
Wemborough Road (W)	0.770	3.1	0.760	3.0
Abercorn Road	0.950	10.9	0.790	3.6

6.10 From Table 6.6 it can be seen that under Year 2020 'base + development' traffic flow conditions the roundabout junction will experience some increase in queuing but not to a substantial degree. This is most evident on the Abercorn Road arm during the AM peak and on the Wemborough Road (E) arm during the PM peak with this arm operating at an RFC of 1.000.

Pedestrian and Cycle Infrastructure

6.11 In respect of the impact of the development on local pedestrian infrastructure, the footways on Wemborough Road are generally provided to a c. 2.6 m width and will support all pedestrian activity entering and exiting the site.
6.12 Using the TFL Pedestrian Comfort Guidance it is noted that a footway with a clear unobstructed width of 2.6 m in a 'residential' area can support in the order of 1,650 two-way hourly movements, maintaining a 'comfortable' pedestrian experience. Appendix 13 illustrates the output from a TfL based 'Pedestrian Level of Service Assessment', demonstrating the maximum value of 1,650 two-way hourly movements within the comfortable ' $\mathrm{B}+$ ' standard.

On the basis of on-site observation and even taking into account pedestrian activity associated with the Stanburn Primary School on Abercorn Road, it is conclusive that the Wemborough Road footways would operate within capacity under future conditions.

7. PARKING

7.1 Parking demand data has been obtained in order to gauge current parking levels within the car park to the south of the site in order to assess the impact of the development on parking supply. It was agreed with Harrow Council Highways through the scoping process, that the car park would represent the optimum location for school related set-down / pick-up, and thereby reduce the risk of these activities occurring on the public highway, and in particularly where waiting restriction apply.
7.2 Parking beat surveys have been carried out by an independent survey specialist during typical weekday peak periods including school drop-off / pick-up periods, between 07:00-10:00 and 15:0018:00 on Tuesday $20^{\text {th }}$ January 2015. The parking beat surveys established the demand for parking in 15 minute intervals throughout the survey periods. The survey cordon is illustrated in Figure 12 below.

Figure 12 Parking Stress Survey Cordon

7.3

The results of the parking beat surveys are contained in Appendix 14 and the summary of results is provided in Table 7.1.

Table 7.1 Surveyed Car Park Demand

Time Period	Zone 1 Total Number of Spaces: 28		Zone 2 Total Number of Spaces: 64		Zone 3 Total Number of Spaces: 10		Total of all Zones Total Number of Space: 102	
	Demand	Spare Capacity	Demand	Spare Capacity	Demand	Spare Capacity	Total Demand	Total Spare Capacity
07:00	0	28	1	63	0	10	1	101
07:15	0	28	1	6	0	10	1	44
07:30	1	27	2	62	4	6	7	95
07:45	0	28	4	60	8	2	12	90
08:00	5	23	4	60	8	2	17	85
08:15	11	17	7	57	10	0	28	74
08:30	22	6	20	44	10	0	52	50
08:45	28	0	64	0	10	0	102	0
09:00	24	4	10	54	10	0	44	58
09:15	23	5	28	36	10	0	61	41
09:30	23	5	28	36	9	1	60	42
09:45	23	5	28	36	9	1	60	42
10:00	24	4	28	36	8	2	60	42
Total	184	180	255	544	96	34	505	764
15:00	28	0	64	0	10	0	102	0
15:15	28	0	64	0	10	0	102	0
15:30	28	0	50	14	10	0	88	14
15:45	24	4	20	44	9	1	53	49
16:00	22	6	19	45	9	1	50	52
16:15	28	0	16	48	9	1	53	49

Table 7.1 Surveyed Car Park Demand (Cont.)

$16: 30$	25	3	14	50	4	6	43	59
$16: 45$	17	11	11	53	4	6	32	70
$17: 00$	14	14	9	55	4	6	27	75
$17: 15$	11	17	5	59	2	8	18	84
$17: 30$	11	17	4	60	3	7	18	84
$17: 45$	9	19	4	60	1	9	14	88
$18: 00$	2	26	0	64	0	10	2	100
Total	247	117	280	552	75	55	602	724

7.4 Table 7.1 indicates that the two set-down periods show comparable parking demands levels. Analysis shows that under existing conditions all zones reach capacity during the AM peak at 08:45 and during the PM peak at 15:00 \& 15:15. It is noted that these are the periods at the start and end of the neighbouring Whitchurch Schools days.
7.5 Analysis of predicted parking demand associated with the AHFS drop-offs / pick-ups, in the context of the identified supply is provided at Appendix 15. The calculations also take into account reduced supply as a result of the Whitchurch Schools expansion. The committed trip generation figures used in relation to the Whitchurch Schools expansion were taken from the approved Mott MacDonald Transport Assessment (March 2014).

The methodology used to derive the parking accumulation associated with the AHFS considers the 3 hour TRICS based vehicle trip generation over the AM and PM peak periods (ie. 07:00-10:00 arrivals and 14:00-17:00 departures). These trips have then been superimposed onto the parking profile in accordance with the AHFS start / finish times, in proportion to the predicted number of pupils arriving / departing through each time period (see Table 2.1).
7.7 For the purpose of the parking accumulation calculations it has been assumed that 75\% pupils arrive / depart school in the 15 minute period before or after their school start / finish time. The remaining 25% pupils arrive / depart school 15-30 minutes before or after school start / finish time.
7.8 Consequently, the parking accumulation calculations illustrate that over the AM and PM peak survey periods, the following patterns occur:

- Around the Breakfast Club, AHFS KS4 and KS3 start times it is predicted that there will be sufficient spare capacity to accommodate demand;
- During the periods that the Whitchurch Schools drop-off there would be a shortfall in parking supply, particularly between 08:45 and 09:00;
- Between 09:30 and 09:45 when the majority of AHFS KS5 drop-offs take place there will be potential for demand to exceed supply by 9 vehicles;
- Between 15:00 and 15:30 it is predicted that Whitchurch Schools expansion traffic will mean the car park continues to operate at capacity;
- Between 15:30 and 17:45 when AHFS pick-ups take place there is sufficient parking supply to accommodate demand.

This level of parking is considered appropriate based on site specific demand for the school and any proposed 'out of hours' leisure activities. The disabled and electric vehicle provision accords with London Plan standards and reflects consultation with the GLA.
7.15 The figure of 69 car parking spaces has been derived on the basis of the travel behaviour of existing AHFS staff. The current AHFS Travel Plan (included at Appendix 10) indicates that 53% of staff travel by car with a further 24% of staff car sharing. In terms of preferred mode of travel, 41% of staff said they would prefer to travel by car, whilst 41% would prefer to car share. An average of these figures would see a 63.3% proportion of staff arriving / departing school by car. On the basis that the school will be targeting a 6% modal shift away from car travel as part of achieving a STARS 'Gold' accredited Travel Plan, it should be expected that the proportion of staff travelling to and from school by car will fall to $\mathrm{c} .57 .3 \%$. Applying this to 120 FTE staff would therefore require a parking supply of c .69 spaces.

In this regard, at full capacity, the school will provide as a minimum covered long-stay cycle parking for 173 cycles and 12 additional short stay spaces.

Provision for Pedestrians, Cyclists and Public Transport Users

7.19 From Section 5 it is established that at full capacity the proposed secondary school is likely to generate 310-377 pedestrian trips during the weekday AM and PM pick-up/drop-off periods. Such levels of additional pedestrian demand have been subject to analysis using a TfL 'Pedestrian Level of Service Assessment'.
7.20 As noted in Section 6 of the TA, the assessment shows that footways on Wemborough Road could accommodate in the order of 1,650 two-way peak hour movements before footway comfort is compromised. In the context of committed footway traffic from the Whithchurch Schools expansion, and pedestrian trips associated with AHFS, there would still remain significant capacity to absorb further peak hour pedestrian movements.
7.21 Section 5 shows that AHFS has the potential to generate an increase in public transport trips of 294454 movements during the AM and PM peak periods. Given the school's proximity to bus services on Wemborough Road, Whitchurch Lane and Honeypot Lane, clearly a large proportion of these trips will be undertaken by bus.

In this regard, TfL have stated that as a free school, TfL will not seek additional financial contribution toward bus capacity.

At full capacity, the school will provide as a minimum covered long-stay cycle parking for 173 cycles and 12 additional short stay spaces. This will support cycle trips undertaken by pupils and staff, which is expected to be in the order of 10 movements during the peak hour periods. This is anticipated to increase significantly through the Travel Planning process, which will focus in particular on cycle training, maintenance and safety.

As stated in Section 4, there is a network of signed and recommended routes for cyclists within the vicinity of the proposed school. It is also worth noting that with the introduction of restricted parking on the northern side of Wemborough Road, the cycle lane will be useable for greater periods of the day and provide greater opportunity for students / parents / staff to cycle to and from school on dedicated routes.

Construction Period

In order to minimise disturbance to local residents, a number of mitigating measures will be implemented and enforced throughout the duration of the construction period, the details of which will be provided within a full Construction Logistics Plan (CLP) to be prepared by the site contractor. By way of example the CLP will include:

- Restricted hours to avoid peak arrival and departure periods on the local road network;
- Measures to protect existing footways and marked pedestrian routes using barriers / signage, as appropriate;
- Protection of any statutory services equipment;
- Monitoring of vehicle movements and turning using banksmen, if appropriate;
- Details of any reinstatement works required following completion of works.

A framework CLP is included as part of this planning submission and provides swept path analysis to confirm that construction vehicle access can be gained to the site, with the ability to turn on site and depart in forward gear. As noted previously any modifications required to the access way to facilitate the movement of construction vehicles to and from the school, will be subject to agreement with Harrow Council Highways, Planners and Corporate Estates departments.

Refuse Collection, Deliveries \& Servicing

Given the nature of the proposed development, the number of service vehicles that will deliver to AHFS on a daily or weekly basis will be minimal. These will be limited to waste collection, deliveries to the canteen and general supplies.

A framework Delivery and Servicing Plan (DSP) has been developed and is included as part of this planning submission. Conclusions within the DSP include the following:

- The number of delivery and servicing movements at the Avanti House Secondary School would be minimal;
- The majority of delivery and servicing movements would be undertaken by a vehicle no larger than a transit van, with swept path analysis undertaken for a range of access options;
- Servicing movements would as far as possible be undertaken outside of school start / finish times and would therefore not conflict with access to cycle parking;
- Refuse collection would be undertaken within the school, outside of school operational hours.

Swept path analysis has also been undertaken and appended to the DSP demonstrating that all delivery, servicing, emergency and refuse collection vehicles can enter and exit the development site in a forward gear.

8. MITIGATION \& PLANNING OBLIGATIONS

Travel Plan Structure

8.1 As noted in Section 4 of the TA, a full and through assessment of the impact of person trips generated by the AHFS proposals has been undertaken. In order to ensure that the school maintains a minimal impact on highways and transport operations in the local area, AHFS Secondary School will prepare and implement a STARS accredited Travel Plan. AHFS currently have an accredited Travel Plan, and this will be updated upon occupation of the site at Whitchurch Playing Fields to reflect site specific characteristics.
8.2 It is worthy of note that AHFS achieved STARS ‘Gold' accreditation for the 2014/2015 academic year, demonstrating their dedication to Travel Planning measures and achieving their targets / objectives, a commitment that will be continued and built upon at the Playing Fields site.
8.3 A Travel Plan (TP) has been prepared to accompany the planning application, as a separate document. In preparing the TP reference is made to guidance given in NPPF (2012), the London Plan (2015), Harrow's Core Strategy (2012) as well as TfL's 'Travel Planning for New Development in London.
8.4 The key objective of the TP is to set out a package of measures for reducing the number of car trips generated by parents and staff at the school and to improve safety on the school journey. In terms of planning obligations it is intended that the TP will be secured by way of a Section 106 Agreement, should consent be granted.
8.5 It is proposed to retain the deputy Headteacher as Travel Plan Coordinator (TPC) for AHFS, assisted by administrative staff to deliver the aims and objectives of the Travel Plan.
8.7 The TPC is committed to the regular monitoring and review of the Travel Plan as a means of ensuring that it meets the aims, objectives and targets as set out within the Plan. The output of the annual monitoring and review process will be a Monitoring Report made available to the Council and other stakeholders.
8.8 The most important part of the monitoring process will be the regular re—survey of students and staff on an annual basis. The main purpose of the surveys will be to identify modal split and monitor staff and student travel patterns. The results of these surveys will be analysed by the TPC and the Harrow Council School Travel Plan Officer and will form a key element of the monitoring process. The surveys will seek to understand why certain modes of transport are used and to identify any possible barriers to using sustainable modes of transport.
8.9 Should there be a need to modify or change any aspect of the travel initiatives, the TPC, in consultation with Council Officers, will amend the Action Plan detailing agreed activities to be undertaken and timescales for the implementation of recommendations/ modifications. Should it transpire that STARS targets are not being met financial sanctions will be imposed to fund additional measures to support the travel plan and increase the school's sustainable mode share.

Travel Plan Initiatives

8.10 Key physical and management initiatives to be implemented within the AHFS Travel Plan include:

- Travel Information on the School Website, also repeated in the School Prospectus and on notice boards, as appropriate, to include:
- guidance to parents / guardians on the policy related to set down / pick up at the start and end of the school day so as to minimise impact on movement and parking within the local area and the surrounding local roads;
- guidance on road safety and safe access to / from the school;
- details of safe walking and cycling routes to the school;
- details of public transport services, with links to TfL and other useful websites;
- details of the timings / routings of the bus service run by the school as well as the mechanisms for sign up to the service.
- The establishment and operation of a School Car Share scheme;
- secure area on school website where parents can register interest and be linked up with other parents in their local vicinity;
- TPC to manage and promote scheme highlighting financial and environmental benefits of car sharing.
- Promotion of Walking and Cycling as viable modes of travel amongst students and staff;
- Integral part of school's daily exercise regime;
- Easy to understand mapping made available to students and staff;
- Promote participation in initiatives such as 'Walk to School Week', 'International Walk to School Month' and 'Walk in May';
- Provision of secure, covered cycle parking close to pedestrian entrance of school building to accord with London Plan standards;
- Road safety training as part of the curriculum with specific guidance on the use of safe crossing facilities;
- Cycle skills training and maintenance sessions as part of curriculum including the Governmentsupported 'Bikeability' scheme. Cycle training for students (Bikeability)
- Setting up a cycle club;
- Cycling lessons within PE;
- Cycle trips / excursions to build skills and confidence.
- Active encouragement of the use of existing, local public transport services for access to the school;
- Website links to public transport operators;
- Easy to understand mapping made available to students and staff of most direct and safe routes to bus stops, rail and underground stations;
- Awareness of Zip Oyster Cards that allow free bus travel for children aged 11-15 yrs.
- Parents agreeing and signing a 'Travel Plan charter' committing to the minimisation of car travel wherever possible;
- The implementation of a bus service to serve those students within the catchment area of the school that do not have direct access to existing public transport routes;
- Service to be provided over a single bus or two mini-buses (currently liaising with operators TfL and Desi Coaches);
- At full capacity service to transport 50 students over each start / finish time (totalling 150 students);
- Active promotion of service on School website;
- Regular monitoring of usage and increased provision to respond to demand, as required.
- On the basis of $2014 / 2015$ home postcodes and bus service operations, Figure 13 below identifies an indicative route with two pick-up / drop-off points at strategic locations within the catchment. The route journey time would take less than 30 minutes and would therefore provided opportunity for buses to undertake a trip within each start / finish time stagger;

Figure 13 Indicative School Bus Route

- The implementation of a personalised sustainable travel planning service;
- Parents / guardians provided with the opportunity to discuss the travel options available for their children when accessing AHFS.
- Working in partnership with Travel Plan officers at the Council and TPC's at other local schools;
- Develop partnerships to promote sustainable travel, coordinate joint activities and share ideas (for instance with the Whithchurch Schools);
- Students to be involved in road safety initiatives, environmental and active travel voluntary organisations.

Off-Site Mitigation

It is noted from Pre-Application comments provided by the GLA that the bus stops on Whitchurch Lane require students to cross the Marsh Lane / Whitchurch Lane (B461) / Honeypot Lane (A4140) / Wemborough Road signalised crossroads. In particular, to reach the eastbound bus routes 79/340 which stop on the northern side of Whitchurch Lane only, the most direct access to the school is gained by crossing the uncontrolled Marsh Lane arm of the signal junction.
8.12 As set out in the PIA analysis in Section 4, a number of accidents involving pedestrians have occurred at this junction as a result of the misuse or misunderstanding of crossing facilities. To this end, options have been investigated to deliver controlled crossings on the northern and eastern arms of the junction.
8.13 In retaining the current layout (maintaining the same 'all movements' traffic function) and converting the crossing facilities on both arms to deliver controlled facilities, this would require a significant restaging of the junction operation to deliver an 'all-red' pedestrian phase.
8.14 The results of an indicative LINSIG modelling exercise demonstrate that the addition of simple signalised crossing facilities on the northern and eastern arms of the junction would severely compromise junction performance. During the AM and PM peak modelled 'base' scenarios almost all arms operate at over 100% degree of saturation with the Wemborough Road and Honeypot Lane arms experiencing queuing of up to 100 vehicles, even before traffic associated with the Avanti House Secondary School is accounted for.
8.15 Therefore, a second approach has been pursued considering whether additional controlled crossing facilities could be incorporated into the existing junction staging operation.
8.16 The scheme illustrated on Plan 14042-01 at Appendix 16 proposes the following improvements at the junction, to be undertaken within the existing public highway (boundary as indicated on Plan 14042-02 also at Appendix 17):

- Provide controlled staggered pelican crossing over Marsh Lane arm to be integrated into existing junction staging as illustrated at Appendix 16;
- Carriageway widening on Honeypot Lane approach arm to create dedicated 'Left Turn' lane, ahead lane, and ahead / right lane improving efficiency of traffic movements from this arm;
- Increased exit lane width and taper on Marsh Lane to accord with Design Manual for Roads and Bridges guidelines reducing risk of vehicle collisions for simultaneous ahead movements from Honeypot Lane;
- Adjustments to kerbline from Honeypot Lane entry lane to Wemborough Road providing shallower radius improving manoeuvres for large vehicles (as shown on Plan 14042-TK01 at Appendix 18);
- Widening of Wemborough Road approach lanes allowing large vehicles to queue simultaneously in each lane;
- Adjustments to kerbline from Marsh Lane entry lane to Whitchurch Lane providing shallower radius improving manoeuvres for large vehicles (see Plan 14042-TK01 at Appendix 18).
8.17 It is considered that the above measures would aid pedestrian safety at the junction by offering a controlled crossing facility over the northern Marsh Lane arm, in particular connecting the school with bus stops on the northern side of Whitchurch Lane.
8.18 The addition of a left-turn lane on the Honeypot Lane approach and kerb adjustments on other junction arms would improve traffic congestion through the junction as indicated by the LINSIG model outputs below. Table 8.1 provided AM and PM peak junction operation under ' 2020 base+ development conditions', taking into account the junction improvement proposals, as compared with the '2020 Base' output for existing junction layout conditions as set out in Table 6.1.

Table 8.1 LINSIG Output - '2020 Base + Development' (Proposed Junction Layout)

Arm	AM Peak Hour		PM Peak Hour	
	DoS	Queue	DoS	Queue
Whitchurch Lane Left Ahead	78.8%	16.4	68.1%	12.7
Whitchurch Lane Right	58.0%	2.0	45.4%	1.9
Honeypot Lane Left Ahead	95.5%	17.1	85.2%	11.7
Honeypot Lane Right Ahead	93.3%	15.3	78.4%	10.9
Wemborough Road Left Ahead	84.1%	19.1	71.7%	14.2
Wemborough Road Right	98.0%	9.7	87.1%	7.9
Marsh Lane Left Ahead	97.2%	20.3	84.8%	9.8
Marsh Lane Right Ahead	97.6%	21.6	85.6%	10.5
Junction PRC (\%):	-8.9%		3.3%	

Full LINSIG outputs for Table 8.1 can be found at Appendix 19. The outputs above indicate that the junction improvement proposals would result in comparable capacity and queuing levels through the junction when comparing '2020 base' peak hour traffic under the existing highway layout with '2020 base + development' peak hour traffic under the proposed highway layout.
8.20 When compared to the assessment of the 'base + development' traffic under existing highway layout conditions, the reduction in queueing is significant. This is particularly evident on the Honeypot Lane approach where, for instance, in the AM peak queues in each lane were predicted in excess of 30 PCUs (see Table 6.2), with the junction improvement proposals reducing this to c. 15-17 PCUs.
8.21 These findings demonstrate that the scheme proposed could mitigate the impact of school related traffic, whilst delivering the wider benefit of the controlled pedestrian crossing, improved junction manoeuvrability for larger vehicles and a vehicle safety benefit in the increased exit width and taper on Marsh Lane.
8.22 The junction mitigation scheme proposals and capacity modelling as provided within Appendices 1720 have been issued to Harrow Council Highways, who have agreed the proposals in principle subject to costing of the work and the reaching of a funding agreement for their implementation.

9. SUMMARY \& CONCLUSIONS

Summary

9.1 This Transport Assessment (TA) has been prepared on behalf of the Education Funding Agency (EFA) in conjunction with the governors of Avanti House Free School (AHFS) to consider the highways and transport implications related to the development of a Secondary School on existing greenfield land at Whitchurch Playing Fields, Stanmore.

Conclusions

9.3 From the findings within the TA the following has been concluded:

- School opening hours will be staggered by key stage and will also include breakfast and after-school clubs, to further dissipate the impact of school related person trips. School start/finish times have been developed to avoid highway network peak periods and periods at the beginning and end of the neighbouring Whitchurch Schools day;
- It is proposed to utilise the existing priority junction arrangement and shared access way from Wemborough Road for deliveries / servicing and staff access only. It is understood that any modifications required to the access way to facilitate the movement of larger vehicles to and from the school, will be subject to agreement with Harrow Council Highways, Planners and Corporate Estates departments;
- It is proposed that vehicle-based school drop-offs / pick-ups take place in the car park immediately south of the school. Suggested concepts for pedestrian / vehicular access from Marsh Lane, put forward by public consultation attendees have been rejected by Harrow Council on grounds of highway safety and capacity concerns;
- 48 PIAs occurred within the vicinity of the school of which 16 involved pedestrians and of these less than half involved children. The reasons for the incidents were attributed to pedestrians' inappropriate use/failure to use crossing facilities, attempting to cross between parked cars, failure to look properly and carelessness. In the context of the PIAs identified at the signal junction to the east of the site, potential mitigation measures have been considered;
- Pedestrian infrastructure within the vicinity of the site is of a good standard with pedestrian crossing points present along key pedestrian desire lines and the local footway network provided with lit footways. Abercorn Road to the west of the site benefits from three pedestrian crossing points;
- The site is served by 5 regular bus routes within a 480 m walk distance. Bus services provide connections to key location destinations including Edgeware, Stanmore station, Kingsbury Station and Harrow. The site is also located within 600 m of Canons Park LU station which provides connections to Stanmore to the north and towards central London to the south on the Jubilee Line;
- Trip generation has been calculated using TRICS and adapted to take account of the privately run school bus service. The modal split derived from TRICS is considered to be representative of the likely travel patterns of AHFS students, and in particular the proportion of pedestrians given that c . 25% of 2014/2015 academic year pupils lived within walking distance of the site and this would be expected to increase when the school relocates;
- Analysis of the TRICS database has shown that during the weekday AM and PM peak periods at full capacity AHFS has the ability to generate between 976 and 1086 total person trips during the weekday AM and PM peak periods. Of these $9-22 \%$ are car borne trips, $30-42 \%$ public transport trips, 1% cycle trips and $32-35 \%$ pedestrian trips;
- AHFS vehicle trips have been distributed onto the local highway network as scoped with Harrow Highways using home postcode information for the neighbouring Whitchurch Schools, and thereafter by the 'shortest driven route';
- Assessment of local highway capacity has been undertaken at three junctions, as scoped with Harrow Council highway officers. In assessing these junctions it is concluded that the Whitchurch Schools / Wemborough Road priority junction and roundabout junction to the west of the site will continue to function within capacity. It is predicted that under 'base + development' conditions the signal junction to the east of the site will experience over 100% degrees of saturation on the Honeypot Lane and Wemborough Road arms in the AM peak;
- In assessing the impact of the development on local pedestrian infrastructure, the Wemborough Road footway has been subject to a TfL 'Pedestrian Level of Service Assessment'. Findings from the assessment indicate that the footway can support c. 1,650 two-way peak hour movements before comfort is compromised. In the context of pedestrian trips generated by AHFS, Whitchurch Schools and general foot traffic, there is ample capacity on Wemborough Road footways;
- Parking beat surveys were undertaken in the car park to the south of the school to gauge existing car parking supply and consider the impact of AHFS demand. The proposed AHFS staggered start / finish times ensure that periods of higher AHFS parking accumulation do not coincide with Whitchurch Schools traffic. As such the only predicted period where AHFS drop-off / pick-up parking demand exceeds supply is during the Key Stage 5 AM drop-off;
- It is proposed to provide a total of 69 parking spaces (including 5\% disabled provision, 10\% active electric vehicle charging points and 10% passive electric vehicle charging points). This level of parking is considered appropriate based on site specific demand for the school and any proposed 'out of hours' leisure activities. The disabled and electric vehicle provision accords with London Plan standards and reflects consultation with the GLA;
- At full capacity, the school will provide as a minimum covered long-stay cycle parking for 173 cycles and 12 additional short stay spaces. This will support cycle trips undertaken by pupils and staff, which is expected to be in the order of 10 movements during the peak hour periods, but is anticipated to increase as Travel Plan measures are put in place;
- TfL have stated that as a free school, AHFS will not be required to provide a financial contribution towards improved local bus service capacity;
- A draft Construction Logistics Plans has been provided as part of the planning submission, and the contractor will develop a full version post-application with the aim to minimise any adverse impact or disturbance to any users, businesses and local residents;
- The number of service vehicles that deliver to AHFS on a daily or weekly basis will be minimal and limited to waste collection, deliveries to the canteen and general supplies. Further details have been provided in a framework Delivery and Servicing Plan as part of the planning submission;
- To mitigate any residual impacts and in order to ensure that the school maintains a minimal impact on the operations of the local highway and transport networks, AHFS will prepare and implement a STARS accredited Travel Plan. The Travel Plan, submitted as a separate document within the planning application and to be secured by way of a Section 106 Agreement, sets out a package of measures for reducing the number of car trips generated by parents and staff at the school and to improve safety on the school journey;
- The Travel Plan provides details of the appointed Travel Plan Coordinator (TPC) and is underpinned by a comprehensive and deliverable Action Plan with a view to attaining STARS ‘Gold’ accreditation within 2 years of occupation;
- Commitments are made within the Travel Plan in respect of regular monitoring and review, the setting of targets, repeat travel surveys, a comprehensive list of physical and management initiatives as well as corrective steps, remedial measures and financial sanctions as required;
- As part of the School Travel Plan the school is proposing to operate a privately run bus service that will serve those students within the catchment area of the school that do not have direct access to existing public transport routes. The bus service will off-set the number of vehicle trips generated by the school as a whole, and its success and uptake will be monitored and revised as required;
- Investigations have been undertaken in order to provide additional controlled crossing facilities at the signalised crossroads to the east of the site. An improvement scheme has been developed incorporating pelican crossings over the northern junction arm with highway modifications on the north, west and southern arms in order to improve capacity. The scheme has been submitted to Harrow Council Highways and agreed in principle subject to costing and funding discussions.

On the basis of the findings within this Transport Assessment and in the context of the guidelines within para. 32 of the NPPF it is not considered that there are any residual cumulative impacts in terms of highway safety or on the operational capacity of the surrounding transport network that should result in planning permission being withheld on transport grounds.

FIGURES

Figure 1.1 AM Peak 2014 Surveyed Flows (0745-0845)

Figure 1.2 PM Peak 2014 Surveyed Flows (1615-1715)

Figure 1.3 AM Peak 2020 Future Flows (x 1.0647)

Figure 1.4 PM Peak 2020 Future Flows (x 1.0637)

Figure 1.5 AM Peak Committed Development Flows

Figure 1.6 PM Peak Committed Development Flows

Figure 1.7 AM Peak Development Flows

Figure 1.8 PM Peak Development Flows

Figure 1.9 AM Peak 2020 + Committed Development Flows

Figure 1.10 PM Peak 2020 + Committed Development Flows

Figure 1.11 AM Peak 2020 + Committed Development + Development Flows

Figure 1.12 PM Peak 2020 + Committed Development + Development Flows

Figure 2.1 AM Peak 2014 Surveyed Flows (0745-0845)

Figure 2.2 PM Peak 2014 Surveyed Flows (1615-1715)

Figure 2.3 AM Peak 2020 Future Flows (x 1.0647)

Figure 2.4 PM Peak 2020 Future Flows (x 1.0637)

Figure 2.5 AM Peak Committed Development Flows

Figure 2.6 PM Peak Committed Development Flows

Figure 2.7 AM Peak Development Flows

Figure 2.8 PM Peak Development Flows

Figure 2.9 AM Peak 2020 + Committed Development Flows

Figure 2.10 PM Peak 2020 + Committed Development Flows

Figure 2.11 AM Peak 2020 + Committed Development + Development Flows

Figure 2.12 PM Peak 2020 + Committed Development + Development Flows

Figure 3.1 AM Peak 2014 Surveyed Flows (0745-0845)

Figure 3.2 PM Peak 2014 Surveyed Flows (1615-1715)

Figure 3.3 AM Peak 2020Future Flows (x 1.0647)
MILESTONE

Figure 3.4 PM Peak 2020 Future Flows (x 1.0637)

Figure 3.5 AM Peak Committed Development Flows

Figure 3.6 PM Peak Committed Development Flows

Figure 3.7 AM Peak Development Flows
MILESTONE

Figure 3.8 PM Peak Development Flows

Figure 3.9 AM Peak 2020 + Committed Development Flows

Figure 3.10 PM Peak 2020 + Committed Development Flows

Figure 3.11 AM Peak 2020 + Committed Development + Development Flows

Figure 3.12 PM Peak 2020 + Committed Development + Development Flows

APPENDIX 1

Project:	Avanti House School, Whitchurch Playing Fields
File Ref:	$14-042$
Meeting Date:	$13^{\text {th }}$ January 2015 11:00hrs
Venue:	Harrow Council Offices

Points of discussion

Trip Generation \& Modal Split

1. Method of trip generation was discussed, and considering that the school is not currently operational at the site MTP proposed using the TRICS database as opposed to 'first principles' data - HCH agreed that providing comparable TRICS sites were identified this would be acceptable.
2. HCH noted that if the dominant transport mode is by foot, evidence will need to be provided in the form of catchment information to demonstrate that this proportion could reasonably travel to school on foot within a 15 min walk time.
3. MTP advised that at full capacity there is scope to provide a school bus service HCH agreed that this could be incorporated into the projected trip generation / modal split data.

Impact of Development Related Trip Generation

4. MTP outlined that junction turning counts have been undertaken at the school access and the roundabout / signal junctions to the west and east. HCH agreed that this scope of junction assessment was appropriate.
5. MTP outlined proposals to test junction operation under 2020 future traffic year conditions incorporating 'committed' traffic from the expansion of the Whitchurch First and Junior Schools. HCH agreed with this approach.

Action

MTP to analyse catchment data to confirm mode splits MTP to discuss bus service with EFA / Avanti
6. Distribution of school-related traffic was discussed. HCH proposed that turning proportions should be derived on the basis of postcode data for the Whitchurch First and Junior Schools, which could be obtained from Funmi Atolagbe (Harrow Council School Travel Plan Officer). MTP agreed with this approach.

Vehicular Access

7. MTP outlined the general principle that parents should not enter the school and the vehicular access and circulation within the site is for use by staff, delivery / servicing vehicles and school buses.
8. MTP raised the question of ownership over the car park, through which access will be required between the school and Wemborough Road. Details were provided of a contact in Corporate Estates (Phil Loveland-Cooper) who would be able to confirm ownership of the car park, rights of access and any scope to modify car park arrangements to allow access to the proposed school.

Pedestrian Access

9. As noted at the Pre-App meeting on 19/12/14 pedestrian access will be limited to the main entrance off Wemborough Road. HCH consider than any additional pedestrian access points would encourage parents to set-down / pick-up on the public highway resulting in highway safety concerns / congestion.

Highway Safety

10. Highway safety records have already been obtained from Transport for London for a 5 year period, HCH confirmed that this would need to be analysed within the Transport Assessment submission.

Parking
11. MTP set out proposals to provide 92 on-site car parking spaces, which is considered appropriate to accommodate school staff parking demand and any 'out of hours' leisure use on site. HCH noted that further clarification will be required on leisure uses on site, to confirm the associated level of traffic / parking demand generation.
12. HCH stated that they would rather vehicular set-down / pick-up trips (where necessary) were undertaken off the public highway and within the car park to the south of the school -it was suggested that a parking survey be undertaken to confirm current levels of use over proposed Avanti School set-down / pick-up periods. Parking demand within the car park should then be analysed to determine spare capacity and whether Avanti demand can be accommodated.

MTP to obtain postcode data from Funmi and develop distribution model

MTP / B\&K to investigate ownership / rights of access

MTP to confirm intensity of leisure uses

MTP to instruct parking survey
13. In respect of cycle parking HCH stated that they require cycle parking to the adopted London Plan standards (2011).

Deliveries / Servicing and Construction

14. HCH confirmed that they will require swept path analysis within the TA submission to demonstrate that the largest delivery / servicing and construction vehicles are able to access, turn within the site and exit in forward gear.

Mitigation and Travel Plan

15. HCH stated that there was limited scope for physical improvements to the local highway / transport networks, and mitigation should be targeted principally through the development of a robust Travel Plan.
16. MTP outlined initiatives to be developed within the School Travel Plan including staggered start / finish times by key stage to avoid existing peak periods of congestion on the local highway network and existing set-down / pick-up periods for the neighbouring school.
17. Further initiatives that will form part of the Travel Plan will include cycle / scooter training, road safety seminars, setting up a school car-share scheme, provision of a dedicated school bus and use of public transport for school trips wherever possible.
18. HCH confirmed that any initiatives that promote travel by sustainable modes and reduce / dissipate the impact of vehicle trips would be welcomed. HCH suggested that subject to agreement with the Corporate Estates team, the implementation of a traffic marshalling system through the car park to the south of the school could aid traffic flow and allow for a smoother set-down / pick-up period.
19. It was noted that single yellow line parking restrictions are to be implemented on Wemborough Road in April 2015, over weekday periods 2-3pm. These restrictions aim to prevent commuters for parking over a daily period; however HCH noted that the proposed restriction would allow parents to park on Wemborough Road during set-down / pick-up periods. HCH want to actively discourage this practice and it was suggested that parents should be discouraged from parking on Wemborough Road through the School Travel Plan.

MTP to prepare tracking plans for TA submission

MTP / Avanti / EFA / Funmi to meet to discuss and confirm Travel Plan
initiatives (meeting
19.01.15 at Avanti House School, Common Road 08:30am)

APPENDIX 2

49 If solar technologies are proposed, a plan showing the proposed location of the installation should be provided.
50 If air source heat pumps are being considered they need to be assessed against a gas baseline.

51 If considering biomass the applicant would need to provide an air quality assessment and ensure the system meets the minimum standards set out in the Sustainable Design \& Construction SPG. Details should also be provided on how they would deal with fuel storage, delivery and the fuel supply chain.
52 Should it be demonstrated that the 35% carbon dioxide reduction target cannot be fully achieved for this particular site, the applicant should quantify the shortfall in carbon dioxide savings and liaise with the Council regarding agreeing an offset contribution.

Transport

53 TfL would expect a Transport Assessment (TA) report to be undertaken in accordance with TfL's 'Transport Assessment Best Practice Guidance', available at http://www.tfl.gov.uk/info-for/urban-planning-and-construction/transport-assessment-guidance. This should consider the impact of the development on all modes of transport at both the occupation and construction phases. This will enable TfL to get a better understanding of what measures (if any) may be required to mitigate the impact of the development on the transport network. The application should also be supported by a Travel Plan and a framework Construction Logistics Plan and Delivery and Servicing Plan and to this end it is welcomed that the council will require the school to be STARS (Sustainable Travel: Active, Responsible, Safe) accredited. TfL also operates its own pre-application service through which more detailed transport comments can be provided.
54 As part of a previous government spending review, money has been made available to TfL to mitigate the impact of free schools on bus services in the city. As such, it is not anticipated that TfL will require any funding for bus capacity enhancement to be secured through a Section 106 agreement. Nevertheless, in order to properly plan the bus network and to provide the best level of service for the school it will be necessary to understand both trip generation and the distribution of trips based on the school's likely catchment area. Currently it is not felt that the use of the TRICS database (including surveys of schools outside of London where free bus travel isn't available) reflects the likely trip characteristics of a faith school, which often have larger catchment areas and as a result lower levels of walking. However, the proposals to stagger start and finish times to minimise transport impact are welcomed.
55 It is also of some concern that the closest bus stops to the proposed school entrance are on Whitchurch Lane, requiring students to cross Marsh Lane. A signalised crossing is only provided on the southern side of the junction, which appears to have a poor accident record and a high proportion of collisions involving pedestrians. Although it is acknowledged that the introduction of controlled crossing facilities at the junction may have implications for general traffic, TfL feel that any application must consider such changes in order to allow a balanced decision to be made. Should the introduction of controlled crossing facilities not prove possible, consideration could be given to other measures such as the relocation of bus stops. Given that there will only be a single point of pedestrian access, shared with the adjacent First and Middle schools, evidence should also be provided that pedestrian routes are sufficiently wide to accommodate anticipated flows.
$56 \quad 92$ car parking spaces are proposed. As there are no London Plan standards related to car parking for schools, it is expected that this level of provision should be justified with reference to anticipated usage, bearing in mind the overarching goal of London Plan Policy 6.13 to strike an appropriate balance between promoting new development and preventing excessive car parking provision that can undermine cycling, walking and public transport use. TfL would expect a minimum
of 5% of the spaces to be suitable for blue badge users, and a 10% provision of Electric Vehicle Charing Points (EVCPs). The applicant should also be aware that with the adoption of the Further Alterations of the London Plan the cycle parking standards quoted within your submission have now been superseded, and a provision of long stay space per eight staff or students plus an additional short stay space for each 100 students is now required.

Conclusion

57 The proposed school development could be supported provided the matters raised above, particularly the concerns raised about the loss of playing fields and open space are taken into consideration and fully addressed before the application is submitted to the local planning authority. As the design of the school is at an early stage the GLA recommends a follow up meeting to discuss this element of the scheme further.

[^0]
GLA Follow-Up Pre-Application Meeting Feedback 31.06.15

Transport

1. The proposed site is situated adjacent to the junction of Marsh Lane/ Honey Pot Lane/ Whitchurch Lane/ Wemborough Road; while this is part of the borough highway network, TfL understands it is very busy and congested during the peak hours.
2. As the school is likely to generate significant additional vehicular traffic, pedestrians trips as well as public transport trips, a full transport assessment with full trip generation and mode share assessment should be submitted to support the application. This needs to be done fully in accordance with the current TfL's Transport Assessment Best Practice Guidance. Junction capacity modelling shall also be undertaken for junctions in the vicinity, and should be done in accordance with TfL's modelling guidance.
3. TfL understands that the proposed school is a free school, therefore TfL will not seek additional financial contribution toward bus capacity. However, if this is no longer the case, TfL may seek contribution if it is deemed necessary.
4. It is proposed that 92 car parking spaces will be provided, justified based on a minimum requirement of 75 spaces, plus 10 electric vehicle charging spaces (EVCP) and 6 disabled spaces. TfL stresses that EVCP and Disabled Parking spaces should be considered as part of the overall number of parking spaces, not as additional elements of the overall parking provision. On the basis of this, TfL considers that 92 spaces would be excessive and should be moderately reduced.
5. TfL supports that access for the site will be from Wemborough Road, it recommends that cycle and pedestrians access should be separated from general vehicular access for safety reasons. All proposed/ modified vehicular access must be Stage 1 Road Safety Audited upon submission of the planning application.
6. There is no controlled crossing point on the north side of the Marsh Lane/ Honey Pot Lane/ Whitchurch Lane/ Wemborough Road junction, which is considered inadequate for large number of pupils undertaking West - East crossing movements before the school starting time in the morning and finishing in afternoon. TfL requests that the applicant to develop a robust solution to improve pedestrian facilities at the junction to enable safe and convenient movements between bus stops/ Cannons Park tube station and the school.
7. A full PERS and CERS audit is required to identify walking and cycle improvement needs in the vicinity of the site; Harrow Council should secure appropriate contribution towards the required improvements.
8. A school travel plan accredited by the STAR scheme would be required, this should be secured by appropriate condition/obligation.
9. A delivery \& servicing plan (DSP) is required, and this should be secured by condition.
10. A construction management plan (CMP) and construction logistics plan (CLP), to be produced in accordance with TfL's CLP guidance and submitted accompanying the planning application and should be secured by conditions.

APPENDIX 3

APPENDIX 4

Date:	17 MAR 2014 17:45	Interpreted Listing
Page:	1 of 1 (summary)	

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Summary of Accidents Selected

Site Reference and Description (zero accident counts shown in bold)
Date Period
001 GIS AREA Wemborough area (P)
60 MTS TO NOV-2013

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

.001 GIS AREA Wemborough area (P)

60 MTS TO NOV-2013 SORTED BY DATE

1 0108QA10450 MON 15/12/08 16:20 DARK WHITCHURCH LANE 70M W J/W LONGCROFT ROAD
NO XING FACILITY IN 50M
POLICE - AT SCENE ROAD-DRY WEATHER-FINE
PED RAN INTO PATH OF V1 MASKED BY STATIONARY VEHICLE.

C001 A 801 (CROSSED ROAD MASKED BY STATIONARY OR PARKED VEHICLE)
C001 A 802 (FAILED TO LOOK PROPERLY)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

. 001 GIS AREA Wemborough area (P)

4 0108QA10475 SAT 27/12/08 09:30 LIGHT HONEYPOT LANE 30M NW J/W BRICK LANE
NO XING FACILITY IN 50M
DRIVER V1 COLLIDED WITH REAR OF STAT V2
CASUALTY 001 (001) ($51 \mathrm{Yrs}-\mathrm{M}$ HA9) SLIGHT DRIVER/RIDER

VEHICLE	001 (002)	$\begin{aligned} & \text { CAR } \\ & \text { BT - NOT RE } \end{aligned}$	(51 Yrs - M HA9) STED	GOING AHEAD OTHER	SE TO NW FRONT HIT FIRST
VEHICLE	002 (001)	GDS $=<3.5 \mathrm{~T}$	(? Yrs - U PARKED)	PARKED	P TO P
		BT - DRV NOT CONTACTED			BACK HIT FIRST

V001 A 405 (FAILED TO LOOK PROPERLY)
V001 A 706 (VISION AFFECTED - DAZZLING SUN)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

. 001 GIS AREA Wemborough area (P)

60 MTS TO NOV-2013 SORTED BY DATE

6 0109QA10159 TUE 28/04/09 08:17 LIGHT WEMBOROUGH ROAD J/W HONEYPOT LANE
POLICE-AT SCENE ROAD-DRY WEATHER-FINE SINGLE CWY CROSSROADS AUTO SIG PEDN PHASE AT ATS
V2 STATIONARY IN TRAFFIC AT ATS, V2 STOPPED BEHIND, V3 COLLIDED WITH V1 PUSHING IT INTO V2 ; INJURIES CAUSED

CASUALTY	001 (001)	(42 Yrs - F UNKN)	SLIGHT
CASUALTY	002 (003)	(20 Yrs - F HA3)	SLIGHT
VEHICLE	001 (002)	CAR BT - NOT REQUE	$\begin{aligned} & (46 \text { Yrs - M HA2 }) \\ & \text { STED } \end{aligned}$
VEHICLE	002 (001)	CAR BT - NOT REQUE	(? Yrs - M UNKN) STED
VEHICLE	003 (001)	CAR BT - NOT REQUE	(20 Yrs - F HA3) STED

FRONT SEAT		
WAITING TO TURN LEFT	SW TO NW TAKING PUPIL TO/FROM SC BACK HIT FIRST	JCT APP
WAITING TO TURN LEFT	SW TO NW JNY PART OF WORK FRONT HIT FIRST	
SLOWING OR STOPPING	SW TO NE JNY PART OF WORK APP FRONT HIT FIRST	

V003 A 307 (TRAVELLING TOO FAST FOR CONDITIONS)
V003 A 405 (FAILED TO LOOK PROPERLY
V003 A 603 (NERVOUS/UNCERTAIN/ PANIC)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

V002 A 405 (FAILED TO LOOK PROPERLY)
V002 A 602 (CARELESS/RECKLESS/IN A HURRY)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

.001 GIS AREA Wemborough area (P)

60 MTS TO NOV-2013 SORTED BY DATE

15 0110QA10060 FRI 26/02/10 08:16 LIGHT NFL: STATION PARADE 33M W J/W WHITCHURCH LANE

29 CELL 518000/191000 518130/191230

POLICE - AT SCENE ROAD-WET RAINING ONE-WAY ST NO JUN IN 20M

NO XING FACILITY IN 50M
C1 CROSSED FROM PARKED VEHICLES AND WAS HIT BY V1 WHICH FTS

CASUALTY $001(001)$	$(26 \mathrm{Yrs}-\mathrm{F})$	SLIGHT	PEDESTRIAN	CROSSING ROAD (NOT ON XING)	S BOUND
VEHICLE	001	(000)	CAR	$(? Y r s-U 1)$	GOING AHEAD OTHER

V001 A 407 (PASSING TOO CLOSE TO CYCLIST, HORSE RIDER OR PEDESTRIAN)
V001 B 602 (CARELESS/RECKLESS/IN A HURRY)
V001 B 405 (FAILED TO LOOK PROPERLY)

C001 A 801 (CROSSED ROAD MASKED BY STATIONARY OR PARKED VEHICLE)
C002 A 801 (CROSSED ROAD MASKED BY STATIONARY OR PARKED VEHICLE)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

.001 GIS AREA Wemborough area (P)

60 MTS TO NOV-2013 SORTED BY DATE

V1 HIT PED IN RD

CROSSING ROAD WITHIN 50M XING UNKNOWN
Sch Attended : N/K
GOING AHEAD OTHER W TO E

C001 A 804 (WRONG USE OF PEDESTRIAN CROSSING FACILITY)
C001 A 802 (FAILED TO LOOK PROPERLY)

C001 A 802 (FAILED TO LOOK PROPERLY)
C001 A 808 (CARELESS/RECKLESS/IN A HURRY)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

.001 GIS AREA Wemborough area (P)

60 MTS TO NOV-2013 SORTED BY DATE

$\begin{array}{lllllll}21 & \text { 0110QA10410 WED 06/10/10 07:40 } & \text { LIGHT MARSH LANE J/W HONEYPOT LANE } & \\ \text { POLICE - OVER COU ROAD-WET } & \text { WEATHER-FINE } & \text { SINGLE CWY CROSSROADS AUTO SIG PEDN PHASE AT ATS }\end{array}$
V1 HIT THE REAR OF STATIONARY V2
CASUALTY 001 (002) (44 Yrs-F WD18) SLIGHT DRIVER/RIDER

| VEHICLE | $001(002)$ | CAR | (? Yrs - F HA7) | SLOWING OR STOPPING |
| :--- | :--- | :--- | :--- | :--- |\quad N TO S \quad JCT MID

BT - DRV NOT CONTACTED
V001 A 308 (FOLLOWING TOO CLOSE)
V001 A 405 (FAILED TO LOOK PROPERLY)
V001 A 602 (CARELESS/RECKLESS/IN A HURRY)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

. 001 GIS AREA Wemborough area (P)

60 MTS TO NOV-2013 SORTED BY DATE

C001 A 801 (CROSSED ROAD MASKED BY STATIONARY OR PARKED VEHICLE)
C001 A 802 (FAILED TO LOOK PROPERLY)

V001 B 701 (VISION AFFECTED - STATIONARY OR PARKED VEHICLE(S))
C001 B 808 (CARELESS/RECKLESS/IN A HURRY)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

V001 A 410 (LOSS OF CONTROL)

V001 A 410 (LOSS OF CONTROL)
V001 A 409 (SWERVED)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

. 001 GIS AREA Wemborough area (P)

60 MTS TO NOV-2013 SORTED BY DATE

V002 A 405 (FAILED TO LOOK PROPERLY)
V002 A 406 (FAILED TO JUDGE OTHER PERSON'S PATH OR SPEED
V002 A 602 (CARELESS/RECKLESS/IN A HURRY)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Page: 16 of 19

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

V002 A 403 (POOR TURN OR MANOEUVRE)
V002 A 405 (FAILED TO LOOK PROPERLY)
V002 A 407 (PASSING TOO CLOSE TO CYCLIST, HORSE RIDER OR PEDESTRIAN)

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

End of Accidents for . 001 GIS AREA Wemborough area (P)

End of Report

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Summary of Accidents Selected	
Site Reference and Description (zero accident counts shown in bold) Accidents .001 GIS AREA Wemborough area (P) 48	

The description of how the accident occurred and the contributory factors are the reporting officer's opinion at the time of reporting and may not be the result of extensive investigation

Page: 1 of 5

Personal injury collisions 60 months to $\mathbf{3 0}$ Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Page: 2 of 5

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Page: 3 of 5
Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

Accident Reference Day Date Time Light Conditions Road Surface Severity	21 0110QA10410 WEDNESDAY 06/10/2010 07:40 LIGHT WET SLIGHT	22 0110QA10448 TUESDAY 02/11/2010 $07: 45$ LIGHT WET SLIGHT	23 0110QA10464 THURSDAY 11/11/2010 19:30 DARK WET SLIGHT	$\quad 24$ 0110QA10474 MONDAY 15/11/2010 17:52 DARK WET SLIGHT	25 0110QA10460 WEDNESDAY 24/11/2010 15:45 LIGHT DRY SLIGHT	26 0110QA10484 THURSDAY 02/12/2010 18:05 DARK FROST/ICE SLIGHT	$\quad 27$ 0111QA10051 TUESDAY 15/03/2011 09:05 LIGHT DRY SLIGHT	$\quad 28$ 0111QA10104 FRIDAY 22/04/2011 09:30 LIGHT DRY SLIGHT	29 0111QA10125 SATURDAY 07/05/2011 18:00 LIGHT DRY SLIGHT	30 0111QA10135 MONDAY 16/05/2011 10:23 LIGHT DRY SLIGHT
Pedestrian Location					0	0		50M	X	
Contributory Factors (* denotes pre 2005)	$\begin{array}{ll} 308 & \text { V001 A } \\ 405 & \text { V001 A } \\ 406 & \text { V001 A } \\ 602 & \text { V001 A } \end{array}$	409 V001 A 410 V001 A	408 V002 B 308 V002 B	405 V003 A 406 V003 B 308 V003 B	801 C001 A 701 V001 B 802 C001 A 808 C001 B	410 V001 A 503 V001 A	$\begin{array}{ll} 302 & \text { V002 A } \\ 405 & \text { V002 A } \\ 602 & \text { V002 A } \end{array}$	801 C001 A 802 C001 A	405 V001 A 602 V001 A 802 C001 A 808 C001 A	410 V001 A
Easting/Northing	517730191190	517580191560	518160191220	517860191190	517540191110	517850191180	517570191130	517790191190	517730191190	517880191230

Page: 4 of 5
Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

. 001 GIS AREA Wemborough area (P)								60 MTS TO NOV-2013 SORTED BY DATE		
	31	32	33	34	35	36	37	38	39	40
Accident Reference	0111QA10129	0111QA10149	0111TB01130	0111QA10184	0111QA10284	0112QA10180	0112QA10186	0112QA10199	0112QA10213	0112QA10259
Day	THURSDAY	THURSDAY	MONDAY	THURSDAY	MONDAY	THURSDAY	TUESDAY	FRIDAY	THURSDAY	TUESDAY
Date	19/05/2011	26/05/2011	27/06/2011	07/07/2011	26/09/2011	07/06/2012	12/06/2012	15/06/2012	28/06/2012	07/08/2012
Time	16:57	09:00	14:16	19:49	16:03	22:18	15:40	08:34	22:10	15:10
Light Conditions	LIGHT	LIGHT	LIGHT	LIGHT	LIGHT	DARK	LIGHT	LIGHT	DARK	LIGHT
Road Surface	DRY	DRY	DRY	DRY	DRY	WET	DRY	WET	DRY	DRY
Severity	SLIGHT	SERIOUS								
Conflict										
Pedestrian LocationContributory							0	0		
	410 V001 A	405 V002 A	405 V002 A	405 V001 A	406 V001 A	405 V001 A	802 C 001 A	405 V001 A	405 V001 A	405 V002 B
Factors (* denotes pre 2005)	409 V001 A	302 V 002 A	406 V002 A	302 V 001 A	403 V001 A	302 V 001 A	803 C 001 A	802 C 001 A	406 V001 A	408 V002 A
			602 V002 A		602 V001 A				602 V001 A	405 V001 A
					405 V002 A					308 V001 A
Easting/Northing	517570191130	517570191130	518040191210	517890191190	517740191180	517280190990	517280190990	517360191020	517740191190	517740191170

Page: 5 of 5

Personal injury collisions 60 months to 30 Nov 2013 for Whitchurch First and Middle Schools area, (PROVISIONAL)

. 001 GIS AREA Wemborough area (P)								60 MTS TO NOV-2013 SORTED BY DATE	
	41	42	43	44	45	46	47	48	
Accident Reference	0112QA10315	0112QA10325	0113QA10077	0113QA10080	0113QA10177	0113QA10180	$0113 Q A 10313$	0113QA10361	
Day	WEDNESDAY	WEDNESDAY	SUNDAY	MONDAY	MONDAY	FRIDAY	TUESDAY	FRIDAY	
Date	12/09/2012	26/09/2012	17/02/2013	11/03/2013	13/05/2013	24/05/2013	03/09/2013	04/10/2013	
Time	17:16	07:26	21:03	07:20	17:38	16:53	17:55	08:43	
Light Conditions	LIGHT	LIGHT	DARK	LIGHT	LIGHT	LIGHT	LIGHT	LIGHT	
Road Surface	DRY	WET	DRY	DRY	DRY	DRY	DRY	DRY	
Severity	SLIGHT								
Conflict									
Pedestrian Location	0	0				0		X	
Contributory	405 V001 A	802 C001 A	406 V001 A	403 V002 A	402 V002 A	802 C 001 A	308 V002 A	304 V001 A	
Factors	802 C 001 A	808 C001 A	602 V001 B	405 V002 A	405 V002 A	803 C001 B	405 V002 A	405 V001 A	
(* denotes pre 2005)			405 V001 A	407 V002 A		405 V001 B		602 V001 A	
			408 V002 B			701 V001 A		406 V001 A	
Easting/Northing	517650191380	517780191070	517740191190	517730191190	518030191210	517820191190	517280190970	517260191060	

APPENDIX 5

JOB REF:

TIME	MOVEMENT 1						
	FROM MARSH LANE TO WHITCHURCH LANE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
7:00	12	1	2	1	0	1	17
7:15	11	6	0	2	1	1	21
7:30	18	3	0	1	0	1	23
7:45	33	1	0	2	0	0	36
H/TOT	74	11	2	6	1	3	97
8:00	23	0	0	0	0	0	23
8:15	27	3	0	2	0	0	32
8:30	19	2	0	1	0	0	22
8:45	19	0	0	4	0	0	23
H/TOT	88	5	0	7	0	0	100
9:00	13	3	0	0	0	0	16
9:15	17	3	1	2	0	1	24
9:30	15	2	0	2	0	0	19
9:45	14	1	0	1	0	1	17
H/TOT	59	9	1	5	0	2	76
P/TOT	221	25	3	18	1	5	273

MOVEMENT 2 FROM MARSH LANE TO HONEYPOT LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
61	18	4	1	1	2	87
82	18	3	3	1	1	108
83	7	5	0	3	1	99
104	16	4	3	0	0	127
330	59	16	7	5	4	421
95	13	4	3	0	1	116
115	16	4	0	1	1	137
100	9	4	2	0	0	115
107	15	0	1	0	0	123
417	53	12	6	1	2	491
79	14	1	1	0	0	95
104	15	3	4	0	0	126
61	16	6	0	0	0	83
80	16	4	0	1	0	101
324	61	14	5	1	0	405
1071	173	42	18	7	6	1317

JOB REF:

TIME	MOVEMENT 1						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	15	3	0	2	0	0	20
16:15	10	1	0	1	0	0	12
16:30	6	2	0	2	0	0	10
16:45	13	1	0	3	1	0	18
H/TOT	44	7	0	8	1	0	60
17:00	10	3	0	2	0	0	15
17:15	17	2	0	2	0	0	21
17:30	8	2	0	1	1	0	12
17:45	6	2	0	1	0	0	9
H/TOT	41	9	0	6	1	0	57
18:00	11	2	0	2	0	0	15
18:15	9	1	0	1	0	0	11
18:30	12	0	0	2	0	0	14
18:45	9	1	0	2	0	0	12
H/TOT	41	4	0	7	0	0	52
P/TOT	126	20	0	21	2	0	169

MOVEMENT 2 FROM MARSH LANE TO HONEYPOT LANE						
57	LGV	HGV	PSV	MCL	PCL	TOT
74	9	3	0	1	0	66
48	4	6	1	0	0	90
64	10	9	1	0	0	62
243	28	6	0	2	1	83
92	13	0	2	3	1	301
72	14	3	0	0	0	105
81	9	3	0	2	0	91
85	8	4	1	1	0	94
330	44	10	1	4	0	389
77	5	2	1	0	0	85
88	5	3	0	2	2	100
84	7	1	0	0	3	95
76	4	3	0	3	0	86
325	21	9	1	5	5	366
898	93	43	4	12	6	1056

JOB REF:

TIME	MOVEMENT 3						
	FROM MARSH LANE TO WEMBOROUGH ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
7:00	10	0	2	1	1	0	14
7:15	5	1	0	0	0	0	6
7:30	17	2	0	0	0	0	19
7:45	18	1	0	0	0	0	19
H/TOT	50	4	2	1	1	0	58
8:00	13	2	0	0	0	0	15
8:15	25	8	2	0	0	1	36
8:30	34	3	2	1	0	0	40
8:45	17	1	0	1	1	0	20
H/TOT	89	14	4	2	1	1	111
9:00	15	2	1	0	0	0	18
9:15	21	1	1	0	1	0	24
9:30	12	4	1	0	0	0	17
9:45	20	4	0	0	0	0	24
H/TOT	68	11	3	0	1	0	83
P/TOT	207	29	9	3	3	1	252

MOVEMENT 4 FROM WEMBOROUGH ROAD TO MARSH LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
5	1	1	0	0	0	7
14	3	0	0	0	0	17
11	2	0	0	0	0	13
10	0	0	1	0	1	12
40	6	1	1	0	1	49
10	3	1	1	0	0	15
7	0	1	0	0	0	8
14	1	0	0	0	0	15
11	1	0	0	0	0	12
42	5	2	1	0	0	50
16	0	0	0	0	0	16
12	2	2	0	0	0	16
6	4	1	0	0	0	11
17	2	0	1	0	0	20
51	8	3	1	0	0	63
133	19	6	3	0	1	162

JOB REF:

TIME	MOVEMENT 3						
	FROM MARSH LANE TO WEMBOROUGH ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	29	9	0	0	1	0	39
16:15	19	1	0	0	0	0	20
16:30	19	2	2	1	0	0	24
16:45	13	0	0	0	0	0	13
H/TOT	80	12	2	1	1	0	96
17:00	9	1	0	0	0	0	10
17:15	17	3	0	0	0	0	20
17:30	10	0	2	0	0	0	12
17:45	19	1	0	0	0	0	20
H/TOT	55	5	2	0	0	0	62
18:00	17	0	0	0	0	0	17
18:15	14	1	0	0	0	0	15
18:30	22	2	1	0	1	0	26
18:45	17	3	0	0	1	0	21
H/TOT	70	6	1	0	2	0	79
P/TOT	205	23	5	1	3	0	237

MOVEMENT 4 FROM WEMBOROUGH ROAD TO MARSH LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
9	3	1	0	0	0	13
8	3	1	0	0	0	12
14	3	0	0	0	0	17
15	2	1	0	0	0	18
46	11	3	0	0	0	60
7	0	1	0	1	0	9
19	1	0	1	0	0	21
17	0	0	0	1	0	18
19	4	0	0	0	0	23
62	5	1	1	2	0	71
14	1	0	0	0	0	15
24	0	0	0	0	0	24
14	3	0	0	1	0	18
8	4	0	0	0	0	12
60	8	0	0	1	0	69
168	24	4	1	3	0	200

JOB REF:

TIME	MOVEMENT 5						
	FROM WEMBOROUGH ROAD TO WHITCHURCH LANE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
7:00	76	13	2	1	1	4	97
7:15	115	17	1	1	0	0	134
7:30	96	9	2	5	1	1	114
7:45	108	8	1	1	2	1	121
H/TOT	395	47	6	8	4	6	466
8:00	121	6	1	3	1	0	132
8:15	94	5	1	2	1	1	104
8:30	78	6	1	3	0	1	89
8:45	77	2	0	2	0	1	82
H/TOT	370	19	3	10	2	3	407
9:00	106	11	1	1	3	0	122
9:15	72	5	1	1	1	0	80
9:30	64	8	1	1	2	0	76
9:45	63	10	1	2	0	0	76
H/TOT	305	34	4	5	6	0	354
P/TOT	1070	100	13	23	12	9	1227

MOVMEMENT 6						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
24	12	1	1	0	0	38
27	5	0	0	0	0	32
24	11	1	0	0	0	36
18	2	0	0	1	0	21
93	30	2	1	1	0	127
22	3	0	1	0	0	26
26	3	0	0	0	0	29
30	0	0	0	0	0	30
19	3	1	0	0	0	23
97	9	1	1	0	0	108
24	4	0	0	0	0	28
23	3	1	0	0	0	27
25	4	2	0	1	0	32
24	3	1	1	0	0	29
96	14	4	1	1	0	116
286	53	7	3	2	0	351

MANUAL CLASSIFIED COUNTS

JOB REF:

JOB NAME: WHITCHURCH FIELDS

SITE: $\quad 1$
DATE: 18-06-14
LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE
DAY:
WEDNESDAY

TIME	MOVEMENT 5						
	FROM WEMBOROUGH ROAD TO WHITCHURCH LANE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	77	5	1	3	1	1	88
16:15	72	11	0	1	0	0	84
16:30	84	14	2	1	0	1	102
16:45	87	8	0	1	1	1	98
H/TOT	320	38	3	6	2	3	372
17:00	83	4	0	2	1	0	90
17:15	97	10	1	1	1	0	110
17:30	106	11	0	1	0	2	120
17:45	89	6	1	1	0	1	98
H/TOT	375	31	2	5	2	3	418
18:00	78	8	1	2	1	0	90
18:15	87	3	1	1	0	0	92
18:30	77	2	0	1	0	2	82
18:45	78	6	0	1	3	0	88
H/TOT	320	19	2	5	4	2	352
P/TOT	1015	88	7	16	8	8	1142

MOVEMENT 6						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
22	4	0	1	0	0	27
23	1	2	0	1	0	27
30	7	3	0	0	0	40
27	8	1	0	0	0	36
102	20	6	1	1	0	130
23	3	0	0	0	0	26
18	6	0	0	1	0	25
24	6	1	0	0	0	31
26	3	0	0	0	0	29
91	18	1	0	1	0	111
22	5	0	0	0	0	27
23	1	2	1	0	0	27
23	2	0	0	0	0	25
27	2	0	0	0	0	29
95	10	2	1	0	0	108
288	48	9	2	2	0	349

JOB REF:

TIME	MOVEMENT 7						
	FROM HONEYPOT LANE TO WEMBOROUGH ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
7:00	4	3	0	0	0	0	7
7:15	8	3	0	0	0	0	11
7:30	8	5	1	0	0	0	14
7:45	16	7	2	0	0	0	25
H/TOT	36	18	3	0	0	0	57
8:00	14	0	1	0	0	0	15
8:15	14	1	1	0	0	0	16
8:30	14	2	1	1	0	0	18
8:45	13	2	0	0	0	0	15
H/TOT	55	5	3	1	0	0	64
9:00	17	4	0	0	0	0	21
9:15	13	4	3	0	0	0	20
9:30	22	5	1	0	0	0	28
9:45	13	2	1	0	0	0	16
H/TOT	65	15	5	0	0	0	85
P/TOT	156	38	11	1	0	0	206

MOVEMENT 8 FROM HONEYPOT LANE TO MARSH LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
42	11	5	1	1	0	60
58	18	0	1	0	1	78
57	7	6	3	2	1	76
76	9	2	1	1	1	90
233	45	13	6	4	3	304
68	8	0	1	0	0	77
82	12	6	0	0	0	100
83	11	2	0	1	0	97
86	14	4	0	0	0	104
319	45	12	1	1	0	378
72	13	3	0	0	1	89
63	5	3	0	1	0	72
55	16	2	1	0	1	75
52	6	5	0	1	0	64
242	40	13	1	2	2	300
794	130	38	8	7	5	982

JOB REF:

TIME	MOVEMENT 7						
	FROM HONEYPOT LANE TO WEMBOROUGH ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	28	10	3	0	1	0	42
16:15	29	5	1	0	0	0	35
16:30	42	6	1	0	0	0	49
16:45	41	7	1	1	0	0	50
H/TOT	140	28	6	1	1	0	176
17:00	43	5	1	1	2	1	53
17:15	50	7	0	0	2	0	59
17:30	30	5	1	0	0	0	36
17:45	43	7	0	0	0	1	51
H/TOT	166	24	2	1	4	2	199
18:00	42	2	2	1	1	0	48
18:15	41	6	0	0	1	0	48
18:30	40	5	0	0	1	0	46
18:45	31	5	0	0	0	0	36
H/TOT	154	18	2	1	3	0	178
P/TOT	460	70	10	3	8	2	553

MOVEMENT 8 FROM HONEYPOT LANE TO MARSH LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
77	19	5	3	2	0	106
67	11	4	1	1	0	84
78	14	5	1	2	0	100
60	12	1	0	4	0	77
282	56	15	5	9	0	367
83	13	4	1	0	1	102
74	15	3	0	2	0	94
85	11	0	0	4	0	100
68	13	0	0	1	1	83
310	52	7	1	7	2	379
87	18	1	0	0	1	107
79	5	1	0	0	0	85
67	12	2	0	1	1	83
85	7	0	0	2	0	94
318	42	4	0	3	2	369
910	150	26	6	19	4	1115

JOB REF:

LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE
DAY:
WEDNESDAY

TIME	MOVEMENT 9						
	FROM HONEYPOT LANE TO WHITCHURCH LANE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
7:00	20	2	1	2	0	0	25
7:15	25	6	0	1	0	0	32
7:30	33	5	1	0	0	0	39
7:45	47	2	2	5	0	0	56
H/TOT	125	15	4	8	0	0	152
8:00	42	7	0	2	0	0	51
8:15	46	5	1	1	0	0	53
8:30	39	4	2	3	1	0	49
8:45	39	3	2	2	0	0	46
H/TOT	166	19	5	8	1	0	199
9:00	43	8	1	2	0	1	55
9:15	22	6	1	1	0	0	30
9:30	28	4	3	1	0	0	36
9:45	19	5	2	2	2	0	30
H/TOT	112	23	7	6	2	1	151
P/TOT	403	57	16	22	3	1	502

MOVEMENT 10 FROM WHITCHURCH LANE TO HONEYPOT LANE						
9	LGV	HGV	PSV	MCL	PCL	TOT
17	2	2	1	0	0	14
19	7	1	2	1	1	29
21	5	2	1	1	1	29
66	19	1	1	0	1	29
25	4	1	5	2	3	101
34	1	1	1	0	0	31
24	5	3	3	2	0	41
35	6	1	1	0	1	34
118	16	6	6	2	0	43
18	4	2	2	0	0	149
23	2	1	1	1	0	26
20	7	1	2	0	0	28
19	6	3	2	1	0	30
80	19	7	7	2	0	115
264	54	19	18	6	4	365

JOB REF:

LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE

DAY:
WEDNESDAY

TIME	MOVEMENT 9						
	FROM HONEYPOT LANE TO WHITCHURCH LANE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	35	7	0	1	0	0	43
16:15	39	6	2	2	1	0	50
16:30	38	3	2	2	0	0	45
16:45	30	6	0	1	0	0	37
H/TOT	142	22	4	6	1	0	175
17:00	45	7	0	1	0	0	53
17:15	36	3	0	1	0	0	40
17:30	28	5	0	2	0	0	35
17:45	40	4	2	0	0	0	46
H/TOT	149	19	2	4	0	0	174
18:00	46	8	0	2	0	0	56
18:15	29	3	1	1	0	0	34
18:30	39	1	0	1	0	0	41
18:45	23	3	0	1	1	0	28
H/TOT	137	15	1	5	1	0	159
P/TOT	428	56	7	15	2	0	508

MOVEMENT 10 FROM WHITCHURCH LANE TO HONEYPOT LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
22	5	1	1	1	0	30
27	6	0	1	0	0	34
19	2	0	1	1	0	23
30	4	0	1	1	0	36
98	17	1	4	3	0	123
18	2	2	2	0	0	24
21	4	0	1	0	0	26
37	6	1	1	0	0	45
13	3	0	1	0	0	17
89	15	3	5	0	0	112
25	1	1	1	0	0	28
28	4	2	2	0	0	36
27	2	0	1	0	0	30
19	2	0	1	0	0	22
99	9	3	5	0	0	116
286	41	7	14	3	0	351

JOB REF:

LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE
DAY:
WEDNESDAY

TIME	MOVEMENT 11						
	FROM WHITCHURCH LANE TO WEMBOROUGH ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
7:00	33	7	0	3	0	0	43
7:15	58	16	1	1	0	0	76
7:30	73	10	0	1	0	1	85
7:45	65	6	1	3	1	0	76
H/TOT	229	39	2	8	1	1	280
8:00	77	11	3	0	2	1	94
8:15	62	7	1	1	0	2	73
8:30	65	5	0	4	1	2	77
8:45	58	7	3	2	1	0	71
H/TOT	262	30	7	7	4	5	315
9:00	54	13	0	6	1	0	74
9:15	40	7	3	2	0	0	52
9:30	39	9	1	2	0	0	51
9:45	36	9	2	5	0	1	53
H/TOT	169	38	6	15	1	1	230
P/TOT	660	107	15	30	6	7	825

MOVEMENT 12 FROM WHITCHURCH LANE TO MARSH LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
5	1	0	1	0	0	7
5	2	0	2	1	0	10
12	2	1	2	0	0	17
6	2	1	5	0	0	14
28	7	2	10	1	0	48
11	1	2	1	0	1	16
9	1	0	2	0	0	12
11	1	0	1	0	0	13
14	1	1	1	1	0	18
45	4	3	5	1	1	59
12	1	1	1	0	0	15
7	0	0	0	0	0	7
9	5	0	2	0	0	16
5	2	0	1	0	0	8
33	8	1	4	0	0	46
106	19	6	19	2	1	153

JOB REF:

LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE
DAY:
WEDNESDAY

TIME	MOVEMENT 11						
	FROM WHITCHURCH LANE TO WEMBOROUGH ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	68	11	1	1	0	0	81
16:15	71	12	2	3	1	1	90
16:30	65	12	0	1	0	0	78
16:45	62	5	0	1	1	1	70
H/TOT	266	40	3	6	2	2	319
17:00	64	10	2	3	1	1	81
17:15	90	6	0	0	1	1	98
17:30	77	12	1	2	0	2	94
17:45	69	10	2	0	1	1	83
H/TOT	300	38	5	5	3	5	356
18:00	67	12	2	2	1	1	85
18:15	83	12	0	0	1	0	96
18:30	65	10	0	2	0	0	77
18:45	88	8	0	1	0	2	99
H/TOT	303	42	2	5	2	3	357
P/TOT	869	120	10	16	7	10	1032

MOVEMENT 12 FROM WHITCHURCH LANE TO MARSH LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
23	1	0	2	1	0	27
13	1	0	1	0	0	15
19	1	0	1	0	0	21
25	1	0	1	0	0	27
80	4	0	5	1	0	90
11	0	0	2	0	0	13
16	2	0	1	1	0	20
22	0	0	1	0	0	23
13	2	0	2	0	0	17
62	4	0	6	1	0	73
18	1	0	1	0	1	21
13	2	0	2	1	1	19
21	0	1	1	0	1	24
17	1	0	1	0	0	19
69	4	1	5	1	3	83
211	12	1	16	3	3	246

LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE
DAY:
WEDNESDAY

TIME	TO ARM A MARSH LANE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
7:00	52	13	6	2	1	0	74
7:15	77	23	0	3	1	1	105
7:30	80	11	7	5	2	1	106
7:45	92	11	3	7	1	2	116
H/TOT	301	58	16	17	5	4	401
8:00	89	12	3	3	0	1	108
8:15	98	13	7	2	0	0	120
8:30	108	13	2	1	1	0	125
8:45	111	16	5	1	1	0	134
H/TOT	406	54	17	7	2	1	487
9:00	100	14	4	1	0	1	120
9:15	82	7	5	0	1	0	95
9:30	70	25	3	3	0	1	102
9:45	74	10	5	2	1	0	92
H/TOT	326	56	17	6	2	2	409
P/TOT	1033	168	50	30	9	7	1297

FROM ARM A MARSH LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
83	19	8	3	2	3	118
98	25	3	5	2	2	135
118	12	5	1	3	2	141
155	18	4	5	0	0	182
454	74	20	14	7	7	576
131	15	4	3	0	1	154
167	27	6	2	1	2	205
153	14	6	4	0	0	177
143	16	0	6	1	0	166
594	72	16	15	2	3	702
107	19	2	1	0	0	129
142	19	5	6	1	1	174
88	22	7	2	0	0	119
114	21	4	1	1	1	142
451	81	18	10	2	2	564
1499	227	54	39	11	12	1842

MANUAL CLASSIFIED COUNTS

JOB REF:
17658
AXIOM
Traffic Limited

JOB NAME: WHITCHURCH FIELDS

SITE: $\quad 1$
DATE: $18-06-14$
LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE
DAY:
WEDNESDAY

TIME	TO ARM A MARSH LANE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
11:00	109	23	6	5	3	0	146
16:15	88	15	5	2	1	0	111
16:30	111	18	5	2	2	0	138
16:45	100	15	2	1	4	0	122
H/TOT	408	71	18	10	10	0	517
17:00	101	13	5	3	1	1	124
17:15	109	18	3	2	3	0	135
17:30	124	11	0	1	5	0	141
17:45	100	19	0	2	1	1	123
H/TOT	434	61	8	8	10	2	523
18:00	119	20	1	1	0	2	143
18:15	116	7	1	2	1	1	128
18:30	102	15	3	1	2	2	125
18:45	110	12	0	1	2	0	125
H/TOT	447	54	5	5	5	5	521
P/TOT	1289	186	31	23	25	7	1561

FROM ARM A MARSH LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
101	17	3	2	2	0	125
103	11	6	2	0	0	122
73	8	11	4	0	0	96
90	11	6	3	3	1	114
367	47	26	11	5	1	457
111	17	0	2	0	0	130
106	19	3	2	2	0	132
99	11	5	1	2	0	118
110	11	4	2	1	0	128
426	58	12	7	5	0	508
105	7	2	3	0	0	117
111	7	3	1	2	2	126
118	9	2	2	1	3	135
102	8	3	2	4	0	119
436	31	10	8	7	5	497
1229	136	48	26	17	6	1462

TO ARM A IS TOTAL OF MOVEMENTS 4, 8, 12
FROM ARM A IS TOTAL OF MOVEMENTS 1, 2,3

MANUAL CLASSIFIED COUNTS

JOB REF:
AN

JOB NAME: WHITCHURCH FIELDS

SITE: $\quad 1$
DATE: 18-06-14
LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE
DAY:
wednesday

TIME	TO ARM B WEMBOROUGH ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	тот
7:00	47	10	2	4	1	0	64
7:15	71	20	1	1	0	0	93
7:30	98	17	1	1	0	1	118
7:45	99	14	3	3	1	0	120
H/TOT	315	61	7	9	2	1	395
8:00	104	13	4	0	2	1	124
8:15	101	16	4	1	0	3	125
8:30	113	10	3	6	1	2	135
8:45	88	10	3	3	2	0	106
H/TOT	406	49	14	10	5	6	490
9:00	86	19	1	6	1	0	113
9:15	74	12	7	2	1	0	96
9:30	73	18	3	2	0	0	96
9:45	69	15	3	5	0	1	93
H/TOT	302	64	14	15	2	1	398
P/TOT	1023	174	35	34	9	8	1283

FROM ARM B WEMBOROUGH ROAD						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
105	26	4	2	1	4	142
156	25	1	1	0	0	183
131	22	3	5	1	1	163
136	10	1	2	3	2	154
528	83	9	10	5	7	642
153	12	2	5	1	0	173
127	8	2	2	1	1	141
122	7	1	3	0	1	134
107	6	1	2	0	1	117
509	33	6	12	2	3	565
146	15	1	1	3	0	166
107	10	4	1	1	0	123
95	16	4	1	3	0	119
104	15	2	4	0	0	125
452	56	11	7	7	0	533
1489	172	26	29	14	10	1740

MANUAL CLASSIFIED COUNTS

JOB REF:
Traffic Limited

JOB NAME: WHITCHURCH FIELDS

SITE: 1
DATE: $\quad 18-06-14$
LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE
DAY:
WEDNESDAY

TIME	TO ARM B						
	WEMBOROUGH ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	тот
16:00	125	30	4	1	2	0	162
16:15	119	18	3	3	1	1	145
16:30	126	20	3	2	0	0	151
16:45	116	12	1	2	1	1	133
H/TOT	486	80	11	8	4	2	591
17:00	116	16	3	4	3	2	144
17:15	157	16	0	0	3	1	177
17:30	117	17	4	2	0	2	142
17:45	131	18	2	0	1	2	154
H/TOT	521	67	9	6	7	7	617
18:00	126	14	4	3	2	1	150
18:15	138	19	0	0	2	0	159
18:30	127	17	1	2	2	0	149
18:45	136	16	0	1	1	2	156
H/TOT	527	66	5	6	7	3	614
P/TOT	1534	213	25	20	18	12	1822

FROM ARM B WEMBOROUGH ROAD						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
108	12	2	4	1	1	128
103	15	3	1	1	0	123
128	24	5	1	0	1	159
129	18	2	1	1	1	152
468	69	12	7	3	3	562
113	7	1	2	2	0	125
134	17	1	2	2	0	156
147	17	1	1	1	2	169
134	13	1	1	0	1	150
528	54	4	6	5	3	600
114	14	1	2	1	0	132
134	4	3	2	0	0	143
114	7	0	1	1	2	125
113	12	0	1	3	0	129
475	37	4	6	5	2	529
1471	160	20	19	13	8	1691

TO ARM B IS TOTAL OF MOVEMENTS 3, 7, 11
FROM ARM B IS TOTAL OF MOVEMENTS 4, 5, 6

MANUAL CLASSIFIED COUNTS

JOB REF:
Traffic

DATE: 18-06-14

DAY:
wednesday

TIME	TO ARM C HONEYPOT LANE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
	94	32	7	3	1	2	139
$7: 15$	126	30	4	5	2	2	169
$7: 30$	126	23	8	1	4	2	164
$7: 45$	143	23	5	4	1	1	177
H/TOT	489	108	24	13	8	7	649
$8: 00$	142	20	5	5	0	1	173
$8: 15$	175	20	5	3	3	1	207
$8: 30$	154	14	7	3	0	1	179
$8: 45$	161	24	2	2	0	0	189
H/TOT	632	78	19	13	3	3	748
$9: 00$	121	22	3	3	0	0	149
$9: 15$	150	20	5	5	1	0	181
$9: 30$	106	27	9	2	1	0	145
$9: 45$	123	25	8	3	2	0	161
H/TOT	500	94	25	13	4	0	636
P/TOT	1621	280	68	39	15	10	2033

FROM ARM C HONEYPOT LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
66	16	6	3	1	0	92
91	27	0	2	0	1	121
98	17	8	3	2	1	129
139	18	6	6	1	1	171
394	78	20	14	4	3	513
124	15	1	3	0	0	143
142	18	8	1	0	0	169
136	17	5	4	2	0	164
138	19	6	2	0	0	165
540	69	20	10	2	0	641
132	25	4	2	0	2	165
98	15	7	1	1	0	122
105	25	6	2	0	1	139
84	13	8	2	3	0	110
419	78	25	7	4	3	536
1353	225	65	31	10	6	1690

MANUAL CLASSIFIED COUNTS

JOB REF:
17658
AXIOM
Traffic Limited
JOB NAME: WHITCHURCH FIELDS

SITE: $\quad 1$
DATE: $18-06-14$
LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE
DAY:
WEDNESDAY

TIME	TO ARM C HONEYPOT LANE						
	CAR	LGV	HGV	PSV	MCL	PCL	тот
16:00	101	14	4	2	2	0	123
16:15	124	16	8	2	1	0	151
16:30	97	13	12	2	1	0	125
16:45	121	22	7	1	3	1	155
H/TOT	443	65	31	7	7	1	554
17:00	133	18	2	2	0	0	155
17:15	111	24	3	1	3	0	142
17:30	142	21	5	1	1	0	170
17:45	124	14	4	2	1	0	145
H/TOT	510	77	14	6	5	0	612
18:00	124	11	3	2	0	0	140
18:15	139	10	7	3	2	2	163
18:30	134	11	1	1	0	3	150
18:45	122	8	3	1	3	0	137
H/TOT	519	40	14	7	5	5	590
P/TOT	1472	182	59	20	17	6	1756

FROM ARM C HONEYPOT LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
140	36	8	4	3	0	191
135	22	7	3	2	0	169
158	23	8	3	2	0	194
131	25	2	2	4	0	164
564	106	25	12	11	0	718
171	25	5	3	2	2	208
160	25	3	1	4	0	193
143	21	1	2	4	0	171
151	24	2	0	1	2	180
625	95	11	6	11	4	752
175	28	3	3	1	1	211
149	14	2	1	1	0	167
146	18	2	1	2	1	170
139	15	0	1	3	0	158
609	75	7	6	7	2	706
1798	276	43	24	29	6	2176

TO ARM C IS TOTAL OF MOVEMENTS 2, 6, 10
FROM ARM C IS TOTAL OF MOVEMENTS 7, 8,9

MANUAL CLASSIFIED COUNTS

JOB REF:
17658
AXIOM
Traffic Limited

JOB NAME: WHITCHURCH FIELDS

SITE: $\quad 1$
DATE: $18-06-14$
LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE
DAY:
wednesday

TIME	TO ARM D WHITCHURCH LANE						
	CAR	LGV	HGV	PSV	MCL	PCL	тот
7:00	108	16	5	4	1	5	139
7:15	151	29	1	4	1	1	187
7:30	147	17	3	6	1	2	176
7:45	188	11	3	8	2	1	213
H/TOT	594	73	12	22	5	9	715
8:00	186	13	1	5	1	0	206
8:15	167	13	2	5	1	1	189
8:30	136	12	3	7	1	1	160
8:45	135	5	2	8	0	1	151
H/TOT	624	43	8	25	3	3	706
9:00	162	22	2	3	3	1	193
9:15	111	14	3	4	1	1	134
9:30	107	14	4	4	2	0	131
9:45	96	16	3	5	2	1	123
H/TOT	476	66	12	16	8	3	581
P/TOT	1694	182	32	63	16	15	2002

FROM ARM D WHITCHURCH LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
47	10	2	5	0	0	64
80	25	2	5	2	1	115
104	17	3	4	1	2	131
92	13	3	9	1	1	119
323	65	10	23	4	4	429
113	16	6	2	2	2	141
105	9	2	6	2	2	126
100	11	3	6	1	3	124
107	14	5	4	2	0	132
425	50	16	18	7	7	523
84	18	3	9	1	0	115
70	9	4	3	1	0	87
68	21	2	6	0	0	97
60	17	5	8	1	1	92
282	65	14	26	3	1	391
1030	180	40	67	14	12	1343

MANUAL CLASSIFIED COUNTS

JOB REF:
17658
AXIOM
Traffic Limited

JOB NAME: WHITCHURCH FIELDS

SITE: $\quad 1$
DATE: $18-06-14$
LOCATION: MARSH LANE / WEMBOROUGH ROAD / HONEYPOT LANE / WHITCHURCH LANE
DAY:
WEDNESDAY

TIME	TO ARM D WHITCHURCH LANE						
	CAR	LGV	HGV	PSV	MCL	PCL	тот
16:00	127	15	1	6	1	1	151
16:15	121	18	2	4	1	0	146
16:30	128	19	4	5	0	1	157
16:45	130	15	0	5	2	1	153
H/TOT	506	67	7	20	4	3	607
17:00	138	14	0	5	1	0	158
17:15	150	15	1	4	1	0	171
17:30	142	18	0	4	1	2	167
17:45	135	12	3	2	0	1	153
H/TOT	565	59	4	15	3	3	649
18:00	135	18	1	6	1	0	161
18:15	125	7	2	3	0	0	137
18:30	128	3	0	4	0	2	137
18:45	110	10	0	4	4	0	128
H/TOT	498	38	3	17	5	2	563
P/TOT	1569	164	14	52	12	8	1819

FROM ARM D WHITCHURCH LANE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
113	17	2	4	2	0	138
111	19	2	5	1	1	139
103	15	0	3	1	0	122
117	10	0	3	2	1	133
444	61	4	15	6	2	532
93	12	4	7	1	1	118
127	12	0	2	2	1	144
136	18	2	4	0	2	162
95	15	2	3	1	1	117
451	57	8	16	4	5	541
110	14	3	4	1	2	134
124	18	2	4	2	1	151
113	12	1	4	0	1	131
124	11	0	3	0	2	140
471	55	6	15	3	6	556
1366	173	18	46	13	13	1629

TO ARM D IS TOTAL OF MOVEMENTS 1, 5, 9
FROM ARM D IS TOTAL OF MOVEMENTS 10, 11, 12

JOB REF:
17658

JOB NAME: WHITCHURCH FIELDS

SITE:
DATE: 18/06/2014

LOCATION: WHITCHURCH SCHOOLS / WEMBOROUGH ROAD
DAY: WEDNESDAY

TIME	MOVEMENT 1						
	FROM WHITCHURCH SCHOOLS TO WEMBOROUGH ROAD (E)						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
7:00	0	0	0	0	0	0	0
7:15	0	0	0	0	0	0	0
7:30	0	0	0	0	0	0	0
7:45	1	1	0	0	0	0	2
H/TOT	1	1	0	0	0	0	2
8:00	2	0	0	0	0	0	2
8:15	12	0	0	0	0	0	12
8:30	24	1	0	0	0	0	25
8:45	30	0	0	0	0	1	31
H/TOT	68	1	0	0	0	1	70
9:00	21	0	0	0	0	0	21
9:15	2	0	0	0	0	0	2
9:30	1	0	0	0	0	0	1
9:45	2	0	0	0	0	0	2
H/TOT	26	0	0	0	0	0	26
P/TOT	95	2	0	0	0	1	98

MOVEMENT 2 FROM WHITCHURCH SCHOOLS TO WEMBOROUGH ROAD (W)						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
4	0	0	0	0	0	4
4	0	0	0	0	0	4
4	0	0	0	0	0	4
9	0	0	0	0	0	9
22	1	0	0	0	0	23
45	1	0	0	0	0	46
80	2	0	0	0	0	82
16	0	0	0	0	0	16
3	0	0	0	0	0	3
0	0	0	0	0	0	0
3	0	0	0	0	0	3
22	0	0	0	0	0	22
106	2	0	0	0	0	108

JOB REF:
17658

JOB NAME: WHITCHURCH FIELDS

SITE:
DATE: 18/06/2014

LOCATION: WHITCHURCH SCHOOLS / WEMBOROUGH ROAD
DAY: WEDNESDAY

TIME	MOVEMENT 1 FROM WHITCHURCH SCHOOLS TO WEMBOROUGH ROAD (E)						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	2	0	0	0	0	0	2
16:15	5	0	0	0	0	0	5
16:30	10	0	0	0	0	0	10
16:45	4	0	0	0	0	0	4
H/TOT	21	0	0	0	0	0	21
17:00	1	0	0	0	0	0	1
17:15	1	0	0	0	0	0	1
17:30	5	1	0	0	0	0	6
17:45	6	0	0	0	0	0	6
H/TOT	13	1	0	0	0	0	14
18:00	2	0	0	1	0	0	3
18:15	0	0	0	0	0	0	0
18:30	2	0	0	0	0	0	2
18:45	0	0	0	0	0	0	0
H/TOT	4	0	0	1	0	0	5
P/TOT	38	1	0	1	0	0	40

MOVEMENT 2						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
6	0	0	0	0	0	6
2	0	0	0	0	0	2
22	0	0	0	0	1	23
5	0	0	0	0	0	5
35	0	0	0	0	1	36
6	0	0	0	0	0	6
2	0	0	0	0	0	2
10	0	0	0	0	0	10
14	0	0	0	0	0	14
32	0	0	0	0	0	32
2	0	0	0	0	0	2
3	0	0	0	0	0	3
1	0	0	0	0	0	1
0	0	0	0	0	0	0
6	0	0	0	0	0	6
73	0	0	0	0	1	74

JOB REF:
17658

JOB NAME: WHITCHURCH FIELDS

SITE:
DATE: 18/06/2014

LOCATION: WHITCHURCH SCHOOLS / WEMBOROUGH ROAD
DAY: WEDNESDAY

TIME	MOVEMENT 3						
	FROM WEMBOROUGH ROAD (W) TO WHITCHURCH SCHOOLS						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
	0	0	0	0	0	0	0
	5	0	0	0	1	0	6
	2	1	0	0	0	0	3
	8	1	0	0	0	0	9
	15	2	0	0	1	0	18
	12	0	0	0	0	0	12
	42	1	0	0	0	0	43
$8: 30$	45	0	0	0	0	0	45
$8: 45$	23	1	0	0	0	0	24
H/TOT	122	2	0	0	0	0	124
$9: 00$	2	0	0	0	0	0	2
$9: 15$	12	0	0	0	0	0	12
$9: 30$	8	0	0	0	0	0	8
$9: 45$	1	0	0	0	0	0	1
H/TOT	23	0	0	0	0	0	23
P/TOT	160	4	0	0	1	0	165
			0	0		0	

MOVEMENT 4						
FROM WEMBOROUGH ROAD (E) TO WHITCHURCH SCHOOLS						
0	LGV	HGV	PSV	MCL	PCL	TOT
1	0	0	0	0	0	0
0	0	0	0	0	0	1
4	0	0	0	0	0	0
5	0	0	0	0	0	4
12	0	0	0	0	0	5
12	0	0	0	0	0	12
40	1	0	0	0	0	12
33	1	0	0	0	2	43
97	2	0	0	0	0	34
3	0	0	0	0	2	101
7	0	0	0	0	0	3
8	0	0	0	0	0	7
9	0	0	0	0	0	8
27	0	0	0	0	0	27
129	2	0	0	0	2	133

MANUAL CLASSIFIED COUNTS

JOB REF:
17658

JOB NAME: WHITCHURCH FIELDS

SITE:
DATE: 18/06/2014

LOCATION: WHITCHURCH SCHOOLS / WEMBOROUGH ROAD
DAY: WEDNESDAY

TIME	MOVEMENT 3						
	FROM WEMBOROUGH ROAD (W) TO WHITCHURCH SCHOOLS						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	2	0	0	0	0	0	2
16:15	7	0	0	0	0	0	7
16:30	1	0	0	0	0	0	1
16:45	0	0	0	0	0	0	0
H/TOT	10	0	0	0	0	0	10
17:00	3	0	0	0	0	0	3
17:15	3	0	0	0	0	0	3
17:30	3	0	0	0	0	0	3
17:45	3	0	0	0	0	0	3
H/TOT	12	0	0	0	0	0	12
18:00	3	0	0	0	0	0	3
18:15	1	0	0	0	0	0	1
18:30	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0
H/TOT	4	0	0	0	0	0	4
P/TOT	26	0	0	0	0	0	26

MOVEMENT 4 FROM WEMBOROUGH ROAD (E) TO WHITCHURCH SCHOOLS						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
3	0	0	0	0	0	3
8	0	0	0	0	0	8
8	0	0	0	0	0	8
2	0	0	0	0	0	2
21	0	0	0	0	0	21
2	0	0	0	0	0	2
5	0	0	0	0	0	5
1	1	0	0	0	0	2
1	0	0	0	0	0	1
9	1	0	0	0	0	10
1	0	0	0	0	0	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	1
31	1	0	0	0	0	32

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	MOVEMENT 1						
	FROM ABERCORN ROAD TO WEMBOROUGH ROAD (E)						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
	30	7	0	0	0	0	37
	32	3	1	0	0	1	37
	28	5	0	1	0	1	35
	29	6	0	0	0	0	35
	119	21	1	1	0	2	144
	37	4	0	1	0	0	42
$8: 15$	42	0	0	1	1	1	45
$8: 30$	45	0	0	0	0	0	45
$8: 45$	34	2	0	0	0	0	36
H/TOT	158	6	0	2	1	1	168
$9: 00$	26	1	0	0	0	0	27
$9: 15$	28	2	0	0	0	0	30
$9: 30$	19	3	1	0	0	0	23
$9: 45$	38	3	0	1	0	0	42
H/TOT	111	9	1	1	0	0	122
P/TOT	388	36	2	4	1	3	434

MOVEMENT 2 FROM ABERCORN ROAD TO ST. ANDREWS DRIVE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
44	5	0	0	0	0	49
59	7	0	1	0	0	67
88	9	0	1	0	1	99
84	10	0	1	0	0	95
275	31	0	3	0	1	310
108	1	1	2	0	0	112
84	2	0	0	0	1	87
50	4	0	1	0	0	55
57	4	0	1	0	0	62
299	11	1	4	0	1	316
87	6	0	0	2	0	95
55	5	0	1	0	0	61
38	4	0	0	0	0	42
41	4	1	2	0	0	48
221	19	1	3	2	0	246
795	61	2	10	2	2	872

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	MOVEMENT 1						
	FROM ABERCORN ROAD TO WEMBOROUGH ROAD (E)						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
	30	2	2	1	0	1	36
	35	0	0	0	1	0	36
	30	5	2	0	0	0	37
	33	6	0	0	0	0	39
	128	13	4	1	1	1	148
	33	4	0	0	0	0	37
$17: 15$	37	3	0	0	1	0	41
$17: 30$	30	5	0	0	0	0	35
$17: 45$	39	5	0	0	0	0	44
H/TOT	139	17	0	0	1	0	157
$18: 00$	37	3	0	0	0	0	40
$18: 15$	45	5	1	0	0	0	51
$18: 30$	40	4	0	0	0	0	44
18:45	38	1	1	0	0	0	40
H/TOT	160	13	2	0	0	0	175
P/TOT	427	43	6	1	2	1	480

MOVEMENT 2 FROM ABERCORN ROAD TO ST. ANDREWS DRIVE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
38	4	0	1	1	0	44
46	6	0	0	1	0	53
45	8	0	1	1	0	55
63	6	0	1	0	1	71
192	24	0	3	3	1	223
59	5	2	2	0	0	68
68	2	0	0	0	0	70
69	3	1	2	0	1	76
62	4	0	1	0	0	67
258	14	3	5	0	1	281
69	4	0	1	2	0	76
61	3	0	1	1	0	66
59	4	0	0	0	0	63
59	1	0	1	0	0	61
248	12	0	3	3	0	266
698	50	3	11	6	2	770

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

	MOVEMENT 3 						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
$7: 00$	16	2	0	0	0	0	18
$7: 15$	10	2	0	2	1	0	15
$7: 30$	17	1	1	0	0	1	20
$7: 45$	10	4	1	0	0	0	15
H/TOT	53	9	2	2	1	1	68
$8: 00$	14	0	0	0	0	0	14
$8: 15$	19	2	0	0	0	0	21
$8: 30$	15	1	0	0	0	1	17
$8: 45$	21	1	1	0	1	1	25
H/TOT	69	4	1	0	1	2	77
$9: 00$	13	2	0	0	1	0	16
$9: 15$	28	1	0	1	0	0	30
$9: 30$	15	6	0	1	0	0	22
$9: 45$	19	0	0	0	0	1	20
H/TOT	75	9	0	2	1	1	88
P/TOT	197	22	3	4	3	4	233

MOVEMENT 4 FAROM ABERCORN ROAD TO ABERCORN ROAD						
1	LGV	HGV	PSV	MCL	PCL	TOT
0	0	0	0	0	0	1
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	1
0	0	0	0	0	0	2
1	0	0	0	0	0	0
5	0	0	0	0	0	1
5	0	1	0	0	0	5
11	0	1	0	0	0	6
0	0	0	0	0	0	12
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
13	0	1	0	0	0	14

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	MOVEMENT 3						
	FROM ABERCORN ROAD TO WEMBOROUGH ROAD (W)						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	15	3	0	1	0	0	19
16:15	26	4	0	0	0	1	31
16:30	30	1	0	0	0	0	31
16:45	33	3	0	0	1	4	41
H/TOT	104	11	0	1	1	5	122
17:00	31	4	0	0	0	0	35
17:15	24	4	0	0	0	0	28
17:30	41	3	0	0	0	0	44
17:45	36	4	0	0	0	2	42
H/TOT	132	15	0	0	0	2	149
18:00	28	2	0	0	1	0	31
18:15	24	3	0	0	0	0	27
18:30	39	0	1	0	1	0	41
18:45	37	4	0	0	2	0	43
H/TOT	128	9	1	0	4	0	142
P/TOT	364	35	1	1	5	7	413

MOVEMENT 4 FAR FROM ABERCORN ROAD TO ABERCORN ROAD						
0	LGV	HGV	PSV	MCL	PCL	TOT
2	0	0	0	0	0	0
2	0	0	0	0	0	2
0	0	0	0	0	0	2
4	0	0	0	0	0	0
0	0	0	0	0	0	4
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	0
1	0	0	0	0	0	1
1	0	0	0	0	0	1
0	0	0	0	0	0	1
1	0	0	0	0	0	0
2	0	0	0	0	0	1
4	0	0	0	0	0	2
9	0	0	0	0	0	9

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	MOVEMENT 5						
	FROM WEMBOROUGH ROAD (W) TO ABERCORN ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
	18	1	0	0	0	0	19
	30	5	0	1	0	1	37
	30	8	1	0	0	0	39
	31	2	0	0	0	1	34
	109	16	1	1	0	2	129
	40	6	1	0	0	0	47
$8: 15$	20	0	0	0	0	0	20
$8: 30$	16	1	0	1	0	1	19
$8: 45$	16	4	1	0	1	0	22
H/TOT	92	11	2	1	1	1	108
$9: 00$	39	0	1	1	0	0	41
$9: 15$	35	3	0	1	1	0	40
$9: 30$	25	1	0	0	0	1	27
$9: 45$	20	1	2	0	0	1	24
H/TOT	119	5	3	2	1	2	132
P/TOT	320	32	6	4	2	5	369

MOVEMENT 6						
	FROM WEMBOROUGH ROAD (W) TO WEMBOROUGH ROAD (E)					
CAR	LGV	HGV	PSV	MCL	PCL	TOT
68	17	4	2	1	4	96
96	15	1	2	0	0	114
105	17	2	3	3	1	131
87	6	1	4	0	0	98
356	55	8	11	4	5	439
87	8	2	2	1	0	100
91	9	1	2	0	0	103
37	6	0	0	0	0	43
81	6	0	2	1	0	90
296	29	3	6	2	0	336
70	12	3	1	2	0	88
62	10	1	2	0	1	76
77	10	2	1	2	1	93
60	8	3	2	0	0	73
269	40	9	6	4	2	330
921	124	20	23	10	7	1105

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

	MOVEMENT 5						
TIME	FROM WEMBOROUGH ROAD (W) TO ABERCORN ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
$16: 00$	26	4	1	0	1	0	32
$16: 15$	29	1	1	0	2	0	33
$16: 30$	31	7	0	0	0	0	38
$16: 45$	32	2	1	0	0	0	35
H/TOT	118	14	3	0	3	0	138
$17: 00$	35	3	0	0	0	0	38
$17: 15$	37	2	0	0	0	0	39
$17: 30$	24	0	0	0	1	0	25
$17: 45$	29	4	0	0	0	0	33
H/TOT	125	9	0	0	1	0	135
$18: 00$	26	1	0	0	1	0	28
$18: 15$	35	2	0	0	1	0	38
$18: 30$	30	2	1	0	1	1	35
18:45	44	2	0	0	2	0	48
H/TOT	135	7	1	0	5	1	149
P/TOT	378	30	4	0	9	1	422

MOVEMENT 6						
	FROM WEMBOROUGH ROAD (W) TO WEMBOROUGH ROAD (E)					
CAR	LGV	HGV	PSV	MCL	PCL	TOT
64	7	3	1	1	0	76
65	13	2	1	0	0	81
64	15	3	1	0	1	84
77	11	2	1	1	1	93
270	46	10	4	2	2	334
77	5	1	2	2	0	87
95	16	1	2	1	0	115
75	6	0	1	0	2	84
86	6	0	1	0	1	94
333	33	2	6	3	3	380
77	9	2	2	1	0	91
76	4	1	1	0	0	82
65	2	0	1	2	1	71
70	8	0	1	2	0	81
288	23	3	5	5	1	325
891	102	15	15	10	6	1039

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	MOVEMENT 7						
	FROM WEMBOROUGH ROAD (W) TO ST. ANDREWS DRIVE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
	12	0	1	0	0	0	13
	12	3	0	0	0	0	15
	17	4	1	0	0	0	22
	14	3	0	0	0	0	17
	55	10	2	0	0	0	67
	14	1	0	0	0	0	15
$8: 15$	20	4	0	0	0	0	24
$8: 30$	12	1	0	0	0	0	13
$8: 45$	10	0	0	0	0	0	10
H/TOT	56	6	0	0	0	0	62
$9: 00$	14	1	0	0	0	0	15
$9: 15$	7	2	0	0	0	0	9
9:30	12	1	0	0	0	0	13
$9: 45$	6	1	0	0	0	0	7
H/TOT	39	5	0	0	0	0	44
P/TOT	150	21	2	0	0	0	173

MOVEMENT 8 FROM WEMBOROUGH ROAD (W) TO WEMBOROUGH ROAD (W)						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	1
1	0	0	0	0	0	1
1	0	0	0	0	0	1
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	0	0	0	0	0	0
2	0	0	0	0	0	2
3	0	0	0	0	0	3

JOB REF: 17658
JOB NAME: WHITCHURCH FIELDS

SITE: 3
DATE: 18/06/2014
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	MOVEMENT 7						
	FROM WEMBOROUGH ROAD (W) TO ST. ANDREWS DRIVE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
$16: 00$	10	1	0	0	0	0	11
$16: 15$	7	1	0	0	0	0	8
$16: 30$	8	3	0	0	0	0	11
$16: 45$	9	1	0	0	0	0	10
H/TOT	34	6	0	0	0	0	40
$17: 00$	10	2	0	0	0	0	12
$17: 15$	11	2	0	0	0	0	13
$17: 30$	8	1	0	0	0	0	9
$17: 45$	17	0	0	1	0	0	18
H/TOT	46	5	0	1	0	0	52
$18: 00$	13	1	0	0	0	0	14
$18: 15$	12	3	0	0	0	0	15
$18: 30$	10	1	0	0	0	0	11
18:45	14	0	0	0	0	0	14
H/TOT	49	5	0	0	0	0	54
P/TOT	129	16	0	1	0	0	146

MOVEMENT 8 FROM WEMBOROUGH ROAD (W) TO WEMBOROUGH ROAD (W)						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

	MOVEMENT 9 TIME						
	FROM ST. ANDREWS DRIVE TO WEMBOROUGH ROAD (W)						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
$7: 00$	3	0	0	0	0	0	3
$7: 15$	3	0	0	0	0	0	3
$7: 30$	6	1	0	0	0	0	7
$7: 45$	11	0	0	0	0	0	11
H/TOT	23	1	0	0	0	0	24
$8: 00$	3	0	0	1	0	0	4
$8: 15$	13	1	0	1	0	0	15
$8: 30$	7	1	0	0	0	0	8
$8: 45$	9	1	0	0	0	0	10
H/TOT	32	3	0	2	0	0	37
$9: 00$	7	3	0	0	0	0	10
9:15	3	0	1	0	0	0	4
$9: 30$	3	1	0	0	0	0	4
9:45	6	0	0	0	0	0	6
H/TOT	19	4	1	0	0	0	24
P/TOT	74	8	1	2	0	0	85

MOVEMENT 10						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
17	2	0	0	0	1	20
46	4	1	0	0	0	51
53	23	0	1	0	0	77
57	3	0	2	0	0	62
173	32	1	3	0	1	210
69	2	0	1	0	0	72
64	3	0	0	0	0	67
71	4	0	1	0	0	76
62	3	0	1	0	0	66
266	12	0	3	0	0	281
40	1	0	1	0	0	42
47	1	0	1	1	0	50
33	2	0	1	0	0	36
46	0	1	1	0	0	48
166	4	1	4	1	0	176
605	48	2	10	1	1	667

JOB REF: 17658
JOB NAME: WHITCHURCH FIELDS

SITE: 3
DATE: 18/06/2014
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	MOVEMENT 9						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	10	0	0	0	0	0	10
16:15	11	1	1	0	0	0	13
16:30	5	2	0	0	0	0	7
16:45	10	1	1	0	0	0	12
H/TOT	36	4	2	0	0	0	42
17:00	7	0	0	0	0	0	7
17:15	9	2	0	0	0	0	11
17:30	13	2	0	0	0	0	15
17:45	12	0	0	0	0	0	12
H/TOT	41	4	0	0	0	0	45
18:00	10	2	0	0	0	1	13
18:15	15	1	0	0	0	0	16
18:30	8	0	0	0	0	0	8
18:45	6	1	0	0	0	0	7
H/TOT	39	4	0	0	0	1	44
P/TOT	116	12	2	0	0	1	131

MOVEMENT 10						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
73	3	0	1	0	0	77
66	3	1	1	0	0	71
53	9	1	1	1	0	65
65	2	0	0	0	0	67
257	17	2	3	1	0	280
76	4	0	1	0	0	81
72	4	0	1	0	0	77
64	1	0	1	0	1	67
67	2	0	0	0	0	69
279	11	0	3	0	1	294
55	4	0	1	0	0	60
51	4	1	1	0	0	57
59	3	0	1	0	0	63
50	3	0	0	0	0	53
215	14	1	3	0	0	233
751	42	3	9	1	1	807

JOB REF: 17658
JOB NAME: WHITCHURCH FIELDS

SITE: 3
DATE: 18/06/2014
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

	MOVEMENT 11 TIME						
	FROM ST. ANDREWS DRIVE TO WEMBOROUGH ROAD (E)						

MOVEMENT 12						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	1
2	0	0	0	0	0	2
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	1
3	0	0	0	0	0	3

JOB REF: 17658
JOB NAME: WHITCHURCH FIELDS

SITE: 3
DATE: 18/06/2014
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	MOVEMENT 11						
	FROM ST. ANDREWS DRIVE TO WEMBOROUGH ROAD (E)						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	19	2	0	0	0	0	21
16:15	17	3	0	0	0	0	20
16:30	12	0	0	0	0	0	12
16:45	10	0	0	0	0	0	10
H/TOT	58	5	0	0	0	0	63
17:00	6	1	0	0	0	0	7
17:15	10	2	0	0	0	0	12
17:30	18	1	0	0	0	0	19
17:45	13	1	2	0	0	0	16
H/TOT	47	5	2	0	0	0	54
18:00	16	2	0	0	0	0	18
18:15	11	1	0	0	0	0	12
18:30	10	0	0	0	0	0	10
18:45	13	1	0	0	0	0	14
H/TOT	50	4	0	0	0	0	54
P/TOT	155	14	2	0	0	0	171

MOVEMENT 12						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	1
1	0	0	0	0	0	1
1	0	0	0	0	0	1

JOB REF: 17658
JOB NAME: WHITCHURCH FIELDS

SITE: 3
DATE: 18/06/2014
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	MOVEMENT 13						
	FROM WEMBOROUGH ROAD (E) TO ST. ANDREWS DRIVE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
	11	1	0	0	0	1	13
	9	2	0	0	0	0	11
	21	1	0	0	0	0	22
	9	0	0	0	0	0	9
	50	4	0	0	0	1	55
	13	1	1	0	0	1	16
$8: 15$	18	0	0	0	0	1	19
$8: 30$	18	2	0	0	0	0	20
$8: 45$	22	1	0	0	0	0	23
H/TOT	71	4	1	0	0	2	78
$9: 00$	17	1	0	0	0	0	18
$9: 15$	16	2	0	0	0	0	18
$9: 30$	16	2	0	0	0	0	18
$9: 45$	14	3	0	0	0	0	17
H/TOT	63	8	0	0	0	0	71
P/TOT	184	16	1	0	0	3	204

MOVEMENT 14 FROM WEMBOROUGH ROAD (E) TO WEMBOROUGH ROAD (W)						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
26	4	1	3	1	2	37
47	10	2	2	0	0	61
59	16	0	1	0	0	76
60	13	2	0	1	1	77
192	43	5	6	2	3	251
90	10	1	2	1	1	105
83	8	3	1	0	4	99
63	6	1	3	1	0	74
61	5	4	3	1	1	75
297	29	9	9	3	6	353
84	13	3	5	0	0	105
46	6	5	2	1	0	60
49	9	2	1	0	0	61
43	9	3	5	0	1	61
222	37	13	13	1	1	287
711	109	27	28	6	10	891

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	MOVEMENT 13						
	FROM WEMBOROUGH ROAD (E) TO ST. ANDREWS DRIVE						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
	13	2	0	0	0	0	15
	22	1	0	0	0	1	24
	18	1	0	0	0	0	19
	20	0	0	0	1	1	22
	73	4	0	0	1	2	80
	11	0	0	0	0	0	11
$17: 15$	15	1	0	0	0	0	16
$17: 30$	18	0	0	0	0	0	18
$17: 45$	6	2	0	0	0	0	8
H/TOT	50	3	0	0	0	0	53
$18: 00$	15	0	0	0	0	0	15
$18: 15$	23	1	0	0	0	0	24
$18: 30$	15	1	0	0	0	0	16
18:45	22	0	0	0	0	0	22
H/TOT	75	2	0	0	0	0	77
P/TOT	198	9	0	0	1	2	210

MOVEMENT 14 FROM WEMBOROUGH ROAD (E) TO WEMBOROUGH ROAD (W)						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
90	9	2	3	1	1	106
69	13	2	4	1	2	91
93	12	2	1	1	1	110
78	9	1	1	3	4	96
330	43	7	9	6	8	403
81	10	2	3	1	1	98
103	12	1	1	1	3	121
96	14	2	1	1	3	117
97	11	1	1	0	0	110
377	47	6	6	3	7	446
85	8	2	1	0	4	100
103	15	1	1	1	2	123
92	11	1	3	1	0	108
109	13	0	1	1	4	128
389	47	4	6	3	10	459
1096	137	17	21	12	25	1308

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

	MOVEMENT 15						
TIME	FROM WEMBOROUGH ROAD (E) TO ABERCORN ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
$7: 00$	14	7	0	0	0	0	21
$7: 15$	25	6	1	0	1	0	33
$7: 30$	42	7	0	0	0	0	49
$7: 45$	56	1	0	0	0	0	57
H/TOT	137	21	1	0	1	0	160
$8: 00$	38	0	2	0	0	0	40
$8: 15$	45	5	0	0	0	0	50
$8: 30$	33	3	0	1	0	0	37
$8: 45$	39	2	0	1	0	0	42
H/TOT	155	10	2	2	0	0	169
$9: 00$	43	5	0	0	0	0	48
$9: 15$	19	3	0	0	0	1	23
$9: 30$	17	4	1	0	0	0	22
$9: 45$	23	2	0	0	0	0	25
H/TOT	102	14	1	0	0	1	118
P/TOT	394	45	4	2	1	1	447

MOVEMENT 16						
	FROM WEMBOROUGH ROAD (E) TO WEMBOROUGH ROAD (E)					
CAR	LGV	HGV	PSV	MCL	PCL	TOT
0	0	0	0	0	0	0
0	1	0	0	0	0	1
1	0	0	0	0	0	1
0	0	0	0	0	0	0
1	1	0	0	0	0	2
0	0	0	0	0	0	0
0	1	0	0	0	0	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	1	0	0	0	0	1
0	1	0	0	0	0	1
2	0	1	0	0	0	3
2	0	0	0	0	0	2
0	1	0	0	0	0	1
4	2	1	0	0	0	7
5	4	1	0	0	0	10

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	MOVEMENT 15						
	FROM WEMBOROUGH ROAD (E) TO ABERCORN ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	тот
16:00	53	3	0	0	1	0	57
16:15	51	5	1	0	0	0	57
16:30	52	10	0	1	0	0	63
16:45	45	5	0	1	0	0	51
H/TOT	201	23	1	2	1	0	228
17:00	73	6	0	0	1	0	80
17:15	56	4	0	0	1	0	61
17:30	52	3	0	0	0	0	55
17:45	43	3	0	0	0	1	47
H/TOT	224	16	0	0	2	1	243
18:00	72	4	1	0	1	0	78
18:15	52	3	1	0	1	0	57
18:30	54	4	0	0	0	0	58
18:45	46	3	0	0	0	0	49
H/TOT	224	14	2	0	2	0	242
P/TOT	649	53	3	2	5	1	713

MOVEMENT 16 FROM WEMBOROUGH ROAD (E) TO WEMBOROUGH ROAD (E)						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	0	0	0	0	0	0
1	0	0	0	0	0	1
2	0	0	0	0	0	2
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
2	0	0	0	0	0	2

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	TO ARM A ABERCORN ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
7:00	50	10	0	0	0	1	61
7:15	101	15	2	1	1	1	121
7:30	125	38	1	1	0	0	165
7:45	145	6	0	2	0	1	154
H/TOT	421	69	3	4	1	3	501
8:00	147	8	3	1	0	0	159
8:15	130	8	0	0	0	0	138
8:30	125	8	0	3	0	1	137
8:45	122	9	2	2	1	0	136
H/TOT	524	33	5	6	1	1	570
9:00	122	6	1	2	0	0	131
9:15	101	7	0	2	2	1	113
9:30	75	7	1	1	0	1	85
9:45	89	3	3	1	0	1	97
H/TOT	387	23	5	6	2	3	426
P/TOT	1332	125	13	16	4	7	1497

FROM ARM A ABERCORN ROAD						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
91	14	0	0	0	0	105
101	12	1	3	1	1	119
133	15	1	2	0	3	154
124	20	1	1	0	0	146
449	61	3	6	1	4	524
159	5	1	3	0	0	168
146	4	0	1	1	2	154
115	5	0	1	0	1	122
117	7	2	1	1	1	129
537	21	3	6	2	4	573
126	9	0	0	3	0	138
111	8	0	2	0	0	121
72	13	1	1	0	0	87
98	7	1	3	0	1	110
407	37	2	6	3	1	456
1393	119	8	18	6	9	1553

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	TO ARM A ABERCORN ROAD						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
	152	10	1	1	2	0	166
	148	9	3	1	2	0	163
	138	26	1	2	1	0	168
	142	9	1	1	0	0	153
	580	54	6	5	5	0	650
	184	13	0	1	1	0	199
	165	10	0	1	1	0	177
$17: 30$	140	4	0	1	1	1	147
$17: 45$	140	9	0	0	0	1	150
H/TOT	629	36	0	3	3	2	673
$18: 00$	154	9	1	1	2	0	167
$18: 15$	138	9	2	1	2	0	152
18:30	144	9	1	1	1	1	157
18:45	142	8	0	0	2	0	152
H/TOT	578	35	4	3	7	1	628
P/TOT	1787	125	10	11	15	3	1951

FROM ARM A ABERCORN ROAD						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
83	9	2	3	1	1	99
109	10	0	0	2	1	122
107	14	2	1	1	0	125
129	15	0	1	1	5	151
428	48	4	5	5	7	497
123	13	2	2	0	0	140
129	9	0	0	1	0	139
140	11	1	2	0	1	155
138	13	0	1	0	2	154
530	46	3	5	1	3	588
135	9	0	1	3	0	148
130	11	1	1	1	0	144
139	8	1	0	1	0	149
136	6	1	1	2	0	146
540	34	3	3	7	0	587
1498	128	10	13	13	10	1672

TO ARM A IS TOTAL OF MOVEMENTS $\mathbf{4 , 5 , 1 0 , 1 5}$
FROM ARM A IS TOTAL OF MOVEMENTS $\mathbf{1 , 2 , 3 , 4}$

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	TO ARM B WEMBOROUGH ROAD (W)						
	CAR	LGV	HGV	PSV	MCL	PCL	тот
7:00	45	6	1	3	1	2	58
7:15	60	12	2	4	1	0	79
7:30	82	18	1	1	0	1	103
7:45	81	17	3	0	1	1	103
H/TOT	268	53	7	8	3	4	343
8:00	107	10	1	3	1	1	123
8:15	115	11	3	2	0	4	135
8:30	85	8	1	3	1	1	99
8:45	92	7	5	3	2	2	111
H/TOT	399	36	10	11	4	8	468
9:00	105	18	3	5	1	0	132
9:15	77	7	6	3	1	0	94
9:30	68	16	2	2	0	0	88
9:45	68	9	3	5	0	2	87
H/TOT	318	50	14	15	2	2	401
P/TOT	985	139	31	34	9	14	1212

FROM ARM B WEMBOROUGH ROAD (W)						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
98	18	5	2	1	4	128
138	23	1	3	0	1	166
152	29	4	3	3	1	192
132	11	1	4	0	1	149
520	81	11	12	4	7	635
141	15	3	2	1	0	162
131	13	1	2	0	0	147
65	8	0	1	0	1	75
108	10	1	2	2	0	123
445	46	5	7	3	1	507
124	13	4	2	2	0	145
104	15	1	3	1	1	125
115	12	2	1	2	2	134
86	10	5	2	0	1	104
429	50	12	8	5	4	508
1394	177	28	27	12	12	1650

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	WEMBOROUGH ROAD (W)						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
	115	12	2	4	1	1	135
$16: 15$	106	18	3	4	1	3	135
$16: 30$	128	15	2	1	1	1	148
$16: 45$	121	13	2	1	4	8	149
H/TOT	470	58	9	10	7	13	567
$17: 00$	119	14	2	3	1	1	140
$17: 15$	136	18	1	1	1	3	160
$17: 30$	150	19	2	1	1	3	176
$17: 45$	145	15	1	1	0	2	164
H/TOT	550	66	6	6	3	9	640
$18: 00$	123	12	2	1	1	5	144
$18: 15$	142	19	1	1	1	2	166
$18: 30$	139	11	2	3	2	0	157
18:45	152	18	0	1	3	4	178
H/TOT	556	60	5	6	7	11	645
P/TOT	1576	184	20	22	17	33	1852

FROM ARM B WEMBOROUGH ROAD (W)						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
100	12	4	1	2	0	119
101	15	3	1	2	0	122
103	25	3	1	0	1	133
118	14	3	1	1	1	138
422	66	13	4	5	2	512
122	10	1	2	2	0	137
143	20	1	2	1	0	167
107	7	0	1	1	2	118
132	10	0	2	0	1	145
504	47	2	7	4	3	567
116	11	2	2	2	0	133
123	9	1	1	1	0	135
105	5	1	1	3	2	117
128	10	0	1	4	0	143
472	35	4	5	10	2	528
1398	148	19	16	19	7	1607

TO ARM B IS TOTAL OF MOVEMENTS $\mathbf{3 , 8 , 9 , 1 4}$
FROM ARM B IS TOTAL OF MOVEMENTS 5, 6, 7, 8

JOB REF: 17658

DATE: 18/06/2014
DAY: WEDNESDAY

TIME	TO ARM C 						
	CAR	LGV ANDREWS DRIVE					
	67	6	HGV	PSV	MCL	PCL	TOT
$7: 15$	80	12	0	0	0	1	75
$7: 30$	126	14	1	1	0	0	93
$7: 45$	107	13	0	1	0	1	143
H/TOT	380	45	2	3	0	0	121
$8: 00$	136	3	2	2	0	2	432
$8: 15$	122	6	0	0	0	2	144
$8: 30$	80	7	0	1	0	0	130
$8: 45$	90	5	0	1	0	0	88
H/TOT	428	21	2	4	0	3	458
$9: 00$	118	8	0	0	2	0	128
$9: 15$	79	9	0	1	0	0	89
9:30	66	7	0	0	0	0	73
$9: 45$	61	8	1	2	0	0	72
H/TOT	324	32	1	3	2	0	362
P/TOT	1132	98	5	10	2	5	1252

FROM ARM C ST. ANDREWS DRIVE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
34	5	0	0	0	1	40
63	6	1	1	1	0	72
73	24	0	1	0	0	98
88	5	0	2	0	0	95
258	40	1	4	1	1	305
82	2	0	2	0	0	86
90	4	0	1	0	0	95
94	5	0	1	0	0	100
81	4	1	1	0	0	87
347	15	1	5	0	0	368
56	5	0	1	0	0	62
58	2	1	1	1	0	63
42	4	0	1	0	0	47
63	2	2	1	0	0	68
219	13	3	4	1	0	240
824	68	5	13	2	1	913

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	TO ARM C 						
	CAR	LGV ANDREWS DRIVE					
	61	7	HGV	PSV	MCL	PCL	TOT
$16: 15$	75	8	0	1	1	0	70
$16: 30$	71	12	0	0	1	1	85
$16: 45$	92	7	0	1	1	0	85
H/TOT	299	34	0	3	1	2	103
$17: 00$	80	7	2	2	0	3	343
$17: 15$	94	5	0	0	0	0	91
$17: 30$	95	4	1	2	0	1	99
$17: 45$	85	6	0	2	0	0	103
H/TOT	354	22	3	6	0	1	386
$18: 00$	97	5	0	1	2	0	105
$18: 15$	96	7	0	1	1	0	105
18:30	84	6	0	0	0	0	90
18:45	96	1	0	1	0	0	98
H/TOT	373	19	0	3	3	0	398
P/TOT	1026	75	3	12	7	4	1127

FROM ARM C ST. ANDREWS DRIVE						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
102	5	0	1	0	0	108
94	7	2	1	0	0	104
70	11	1	1	1	0	84
85	3	1	0	0	0	89
351	26	4	3	1	0	385
89	5	0	1	0	0	95
91	8	0	1	0	0	100
95	4	0	1	0	1	101
92	3	2	0	0	0	97
367	20	2	3	0	1	393
81	8	0	1	0	1	91
77	6	1	1	0	0	85
77	3	0	1	0	0	81
70	5	0	0	0	0	75
305	22	1	3	0	1	332
1023	68	7	9	1	2	1110

TO ARM C IS TOTAL OF MOVEMENTS $2,7,12,13$
from arm C IS TOTAL OF MOVEMENTS $\mathbf{9 , 1 0 , 1 1 , 1 2}$

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
DAY: WEDNESDAY

TIME	TO ARM DWEMBOROUGH ROAD (E)						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
7:00	112	27	4	2	1	4	150
7:15	142	21	2	3	1	1	170
7:30	148	22	2	4	3	2	181
7:45	136	14	1	4	0	0	155
H/TOT	538	84	9	13	5	7	656
8:00	133	12	2	3	1	0	151
8:15	146	10	1	3	1	1	162
8:30	98	6	0	0	0	0	104
8:45	124	8	1	2	1	0	136
H/TOT	501	36	4	8	3	1	553
9:00	105	15	3	1	2	0	126
9:15	99	13	2	2	0	1	117
9:30	104	14	3	1	2	1	125
9:45	109	14	4	3	0	0	130
H/TOT	417	56	12	7	4	2	498
P/TOT	1456	176	25	28	12	10	1707

FROM ARM D WEMBOROUGH ROAD (E)						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
51	12	1	3	1	3	71
81	19	3	2	1	0	106
123	24	0	1	0	0	148
125	14	2	0	1	1	143
380	69	6	6	3	4	468
141	11	4	2	1	2	161
146	14	3	1	0	5	169
114	11	1	4	1	0	131
122	8	4	4	1	1	140
523	44	12	11	3	8	601
144	20	3	5	0	0	172
83	11	6	2	1	1	104
84	15	3	1	0	0	103
80	15	3	5	0	1	104
391	61	15	13	1	2	483
1294	174	33	30	7	14	1552

JOB REF: 17658

DATE: 18/06/2014
SITE: 3
LOCATION: ABERCORN ROAD / WEMBOROUGH ROAD / ST. ANDREWS DRIVE
DAY: WEDNESDAY

TIME	TO ARM DWEMBOROUGH ROAD (E)						
	CAR	LGV	HGV	PSV	MCL	PCL	TOT
16:00	113	11	5	2	1	1	133
16:15	118	16	2	1	1	0	138
16:30	106	20	5	1	0	1	133
16:45	121	17	2	1	1	1	143
H/TOT	458	64	14	5	3	3	547
17:00	116	10	1	2	2	0	131
17:15	142	21	1	2	2	0	168
17:30	123	12	0	1	0	2	138
17:45	138	12	2	1	0	1	154
H/TOT	519	55	4	6	4	3	591
18:00	130	14	2	2	1	0	149
18:15	132	10	2	1	0	0	145
18:30	115	6	0	1	2	1	125
18:45	121	10	1	1	2	0	135
H/TOT	498	40	5	5	5	1	554
P/TOT	1475	159	23	16	12	7	1692

FROM ARM D WEMBOROUGH ROAD (E)						
CAR	LGV	HGV	PSV	MCL	PCL	TOT
156	14	2	3	2	1	178
143	19	3	4	1	3	173
163	23	2	2	1	1	192
144	14	1	2	4	5	170
606	70	8	11	8	10	713
165	16	2	3	2	1	189
174	17	1	1	2	3	198
166	17	2	1	1	3	190
146	16	1	1	0	1	165
651	66	6	6	5	8	742
172	12	3	1	1	4	193
178	19	2	1	2	2	204
161	16	1	3	1	0	182
177	16	0	1	1	4	199
688	63	6	6	5	10	778
1945	199	20	23	18	28	2233

TO ARM D IS TOTAL OF MOVEMENTS $\mathbf{1 , 6 , 1 1 , 1 6}$
FROM ARM D IS TOTAL OF MOVEMENTS $13,14,15,16$

APPENDIX 6

MTP Results Summary MTP Results Summary

User and Project Details

Project:	
Title:	
Location:	2015-06 Whitchurch Lane - Wemborough Road - Honeypot Lane - Marsh Lane $14-042 . I s g 3 x$
File name:	
Author:	
Company:	
Address:	
Notes:	

Phase Diagram

Phase Input Data

Phase Name	Phase Type	Assoc. Phase	Street Min	Cont Min
A	Traffic		7	7
B	Traffic		7	7
C	Traffic		7	7
D	Traffic		7	7
E	Pedestrian		7	7
F	Pedestrian		7	7

MTP Results Summary

Phase Intergreens Matrix

	Starting Phase						
Terminating Phase		A	B	C	D	E	F
	A		6	7	7	-	9
	B	7		8	8	5	-
	C	8	8		-	-	10
	D	8	8	-		-	7
	E	-	8	-	-		-
	F	8	-	8	8	-	

Stage Diagram

Phase Delays

Term. Stage	Start Stage	Phase	Type	Value	Cont value
There are no Phase Delays defined					

Scenario 1: 'AM Peak Surveyed' (FG1: 'AM Peak Surveyed', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

MTP Results Summary
Lane Input Data

Junction: Unnamed Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Whitchurch Lane)	U	D	2	3	60.0	Geom	-	2.50	0.00	Y	Arm 6 Left Arm 7 Ahead	$\begin{gathered} 10.70 \\ \text { Inf } \end{gathered}$
$\begin{gathered} \text { 1/2 } \\ \text { (Whitchurch } \\ \text { Lane) } \end{gathered}$	0	D	2	3	7.0	Geom	-	2.80	0.00	N	Arm 8 Right	21.80
2/1 (Honeypot Lane)	U	B	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 7 Left Arm 8 Ahead	$\begin{gathered} 14.50 \\ \text { Inf } \end{gathered}$
$2 / 2$	O	B	2	3	60.0	Geom	-	290	0.00	N	Arm 5 Right	16.90
Lane)											Arm 8 Ahead	Inf
3/1 (Wemborough Road)	U	C	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 5 Ahead Arm 8 Left	$\begin{gathered} \text { Inf } \\ 14.70 \end{gathered}$
(Wemborough Road)	0	C	2	3	2.0	Geom	-	2.60	0.00	N	Arm 6 Right	20.10
4/1											Arm 5 Left	18.10
(Marsh Lane)											Arm 6 Ahead	Inf
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	0	A	2	3	3.0	Geom	-	2.70	0.00	N	Arm 6 Ahead Arm 7 Right	$\begin{gathered} \text { Inf } \\ 18.40 \end{gathered}$
5/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1	U		2	3	60.0	Inf	-	-	-	-	-	-
7/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1	U		2	3	60.0	Inf	-	-	-	-	-	-

MTP Results Summary
Give-Way Lane Input Data

Junction: Unnamed Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	NonBlocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
1/2 (Whitchurch Lane)	8/1 (Right)	1439	0	3/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} \text { 2/2 } \\ \begin{array}{c} \text { Honeypot } \\ \text { Lane) } \end{array} \end{gathered}$	5/1 (Right)	1439	0	4/1	1.09	All	2.00	2.00	0.50	2	2.00
				4/2	1.09	All					
$\begin{gathered} 3 / 2 \\ \text { (Wemborough } \end{gathered}$ Road)	6/1 (Right)	1439	0	1/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	7/1 (Right)	1439	0	$\begin{aligned} & 2 / 1 \\ & 2 / 2 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.09 \end{aligned}$	All All	2.00	2.00	0.50	2	2.00

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
1: 'AM Peak Surveyed'	$07: 45$	$08: 45$	$01: 00$	

Traffic Flows, Actual
Actual Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	143	324	66	533	
	B	224	0	80	373	677	
	C	452	106	0	53	611	
	D	118	516	114	0	748	
	Tot.	794	765	518	492	2569	

MTP Results Summary

Network Results

Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	$\begin{aligned} & \text { Deg } \\ & \text { Sat } \\ & \text { (\%) } \end{aligned}$	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	85.6\%	133	330	47	40.2	-
Unnamed Junction	-	-	-		-	-	-	-	-	-	85.6\%	133	330	47	40.2	-
1/1	Whitchurch Lane Left Ahead	U	D		1	28	-	467	1788	576	81.1\%	-	-	-	5.7	12.7
1/2	Whitchurch Lane Right	0	D		1	28	-	66	1904	119	55.2\%	59	0	7	1.4	1.8
2/1	Honeypot Lane Left Ahead	U	B		1	18	-	328	1839	388	84.5\%	-	-	-	5.6	10.3
2/2	Honeypot Lane Right Ahead	0	B		1	18	-	349	1935	408	85.4\%	0	219	5	6.0	11.0
3/1	Wemborough Road Ahead Left	U	C		1	28	-	505	1865	601	84.0\%	-	-	-	6.5	14.1
3/2	Wemborough Road Right	0	C		1	28	-	106	1875	133	79.7\%	74	0	32	3.0	3.6
4/1	Marsh Lane Left Ahead	U	A		1	20	-	353	1800	420	84.0\%	-	-	-	5.7	10.8
4/2	Marsh Lane Ahead Right	0	A		1	20	-	395	1978	462	85.6\%	0	111	3	6.4	12.2
C1				PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):			$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr)			$\begin{array}{ll}40.22 & \text { Cycle Time (s): } \quad 90 \\ 40.22 & \end{array}$					

MTP Results Summary
Network Layout Diagram

Scenario 2: 'PM Peak Surveyed' (FG2: 'PM Peak Surveyed', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

MTP Results Summary
Lane Input Data

Junction: Unnamed Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Whitchurch Lane)	U	D	2	3	60.0	Geom	-	2.50	0.00	Y	Arm 6 Left Arm 7 Ahead	$\begin{gathered} 10.70 \\ \text { Inf } \end{gathered}$
$\begin{gathered} \text { 1/2 } \\ \text { (Whitchurch } \\ \text { Lane) } \end{gathered}$	0	D	2	3	7.0	Geom	-	2.80	0.00	N	Arm 8 Right	21.80
2/1 (Honeypot Lane)	U	B	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 7 Left Arm 8 Ahead	$\begin{gathered} 14.50 \\ \text { Inf } \end{gathered}$
$2 / 2$	O	B	2	3	60.0	Geom	-	290	0.00	N	Arm 5 Right	16.90
Lane)											Arm 8 Ahead	Inf
3/1 (Wemborough Road)	U	C	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 5 Ahead Arm 8 Left	$\begin{gathered} \text { Inf } \\ 14.70 \end{gathered}$
(Wemborough Road)	0	C	2	3	2.0	Geom	-	2.60	0.00	N	Arm 6 Right	20.10
4/1											Arm 5 Left	18.10
(Marsh Lane)											Arm 6 Ahead	Inf
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	0	A	2	3	3.0	Geom	-	2.70	0.00	N	Arm 6 Ahead Arm 7 Right	$\begin{gathered} \text { Inf } \\ 18.40 \end{gathered}$
5/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1	U		2	3	60.0	Inf	-	-	-	-	-	-
7/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1	U		2	3	60.0	Inf	-	-	-	-	-	-

MTP Results Summary
Give-Way Lane Input Data

Junction: Unnamed Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	NonBlocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
1/2 (Whitchurch Lane)	8/1 (Right)	1439	0	3/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} \text { 2/2 } \\ \begin{array}{c} \text { Honeypot } \\ \text { Lane) } \end{array} \end{gathered}$	5/1 (Right)	1439	0	4/1	1.09	All	2.00	2.00	0.50	2	2.00
				4/2	1.09	All					
$\begin{gathered} 3 / 2 \\ \text { (Wemborough } \end{gathered}$ Road)	6/1 (Right)	1439	0	1/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	7/1 (Right)	1439	0	$\begin{aligned} & 2 / 1 \\ & 2 / 2 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.09 \end{aligned}$	All All	2.00	2.00	0.50	2	2.00

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
2: 'PM Peak Surveyed'	$16: 15$	$17: 15$	$01: 00$	

Traffic Flows, Actual
Actual Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	122	325	81	528	
	B	194	0	190	372	756	
	C	377	134	0	58	569	
	D	62	350	70	0	482	
	Tot.	633	606	585	511	2335	

MTP Results Summary

Network Results

Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	$\begin{aligned} & \text { Deg } \\ & \text { Sat } \\ & \text { (\%) } \end{aligned}$	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	79.8\%	199	258	22	30.8	-
Unnamed Junction	-	-	-		-	-	-	-	-	-	79.8\%	199	258	22	30.8	-
1/1	Whitchurch Lane Left Ahead	U	D		1	30	-	447	1796	619	72.3\%	-	-	-	4.5	11.0
1/2	Whitchurch Lane Right	0	D		1	30	-	81	1904	198	41.0\%	81	0	0	1.2	1.7
2/1	Honeypot Lane Left Ahead	U	B		1	22	-	356	1786	456	78.0\%	-	-	-	4.8	9.9
2/2	Honeypot Lane Right Ahead	0	B		1	22	-	400	1961	501	79.8\%	0	190	4	5.4	11.2
3/1	Wemborough Road Ahead Left	U	C		1	30	-	435	1860	641	67.9\%	-	-	-	4.1	10.4
3/2	Wemborough Road Right	0	C		1	30	-	134	1875	177	75.8\%	118	0	16	3.0	4.6
4/1	Marsh Lane Left Ahead	U	A		1	14	-	227	1809	302	75.3\%	-	-	-	3.7	6.8
4/2	Marsh Lane Ahead Right	0	A		1	14	-	255	1981	330	77.2\%	0	68	2	4.2	7.7
C1				PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):			$\begin{aligned} & 12.8 \\ & 12.8 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr):			$\begin{array}{ll}: \\ : & 30.76 \\ 30.76\end{array} \quad$ Cycle Time (s): $\quad 90$					

MTP Results Summary
Network Layout Diagram

Scenario 3: 'AM Peak Base' (FG3: 'AM Peak Base', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

MTP Results Summary
Lane Input Data

Junction: Unnamed Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Whitchurch Lane)	U	D	2	3	60.0	Geom	-	2.50	0.00	Y	Arm 6 Left Arm 7 Ahead	$\begin{gathered} 10.70 \\ \text { Inf } \end{gathered}$
$\begin{gathered} \text { 1/2 } \\ \text { (Whitchurch } \\ \text { Lane) } \end{gathered}$	0	D	2	3	7.0	Geom	-	2.80	0.00	N	Arm 8 Right	21.80
2/1 (Honeypot Lane)	U	B	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 7 Left Arm 8 Ahead	$\begin{gathered} 14.50 \\ \text { Inf } \end{gathered}$
$2 / 2$	O	B	2	3	60.0	Geom	-	290	0.00	N	Arm 5 Right	16.90
Lane)											Arm 8 Ahead	Inf
3/1 (Wemborough Road)	U	C	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 5 Ahead Arm 8 Left	$\begin{gathered} \text { Inf } \\ 14.70 \end{gathered}$
(Wemborough Road)	0	C	2	3	2.0	Geom	-	2.60	0.00	N	Arm 6 Right	20.10
4/1											Arm 5 Left	18.10
(Marsh Lane)											Arm 6 Ahead	Inf
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	0	A	2	3	3.0	Geom	-	2.70	0.00	N	Arm 6 Ahead Arm 7 Right	$\begin{gathered} \text { Inf } \\ 18.40 \end{gathered}$
5/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1	U		2	3	60.0	Inf	-	-	-	-	-	-
7/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1	U		2	3	60.0	Inf	-	-	-	-	-	-

MTP Results Summary
Give-Way Lane Input Data

Junction: Unnamed Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	NonBlocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
$\begin{gathered} 1 / 2 \\ \text { (Whitchurch } \\ \text { Lane) } \end{gathered}$	8/1 (Right)	1439	0	3/1	1.09	All	2.00	-	0.50	2	2.00
2/2 (Honeypot Lane)	5/1 (Right)	1439	0	4/1	1.09	All	2.00	2.00	0.50	2	2.00
				4/2	1.09	All					
$\begin{gathered} 3 / 2 \\ \text { (Wemborough } \\ \text { Road) } \end{gathered}$	6/1 (Right)	1439	0	1/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	7/1 (Right)	1439	0	$\begin{aligned} & 2 / 1 \\ & 2 / 2 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.09 \end{aligned}$	All All	2.00	2.00	0.50	2	2.00

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
3: 'AM Peak Base'	$07: 45$	$08: 45$	$01: 00$	

Traffic Flows, Actual

Actual Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	152	345	70	567	
	B	238	0	85	397	720	
	C	481	113	0	56	650	
	D	125	550	121	0	796	
	Tot.	844	815	551	523	2733	

MTP Results Summary

Network Results

Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	$\begin{aligned} & \text { Deg } \\ & \text { Sat } \\ & \text { (\%) } \end{aligned}$	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	95.1\%	121	347	74	53.2	-
Unnamed Junction	-	-	-		-	-	-	-	-	-	95.1\%	121	347	74	53.2	-
1/1	Whitchurch Lane Left Ahead	U	D		1	29	-	497	1788	596	83.4\%	-	-	-	6.2	13.9
1/2	Whitchurch Lane Right	0	D		1	29	-	70	1904	114	61.6\%	53	0	17	1.6	2.0
2/1	Honeypot Lane Left Ahead	U	B		1	18	-	350	1839	388	90.2\%	-	-	-	7.2	12.3
2/2	Honeypot Lane Right Ahead	0	B		1	18	-	370	1935	408	90.6\%	0	233	5	7.5	12.9
3/1	Wemborough Road Ahead Left	U	C		1	29	-	537	1865	622	86.4\%	-	-	-	7.2	15.5
3/2	Wemborough Road Right	0	C		1	29	-	113	1875	128	88.1\%	68	0	45	4.1	5.5
4/1	Marsh Lane Left Ahead	U	A		1	19	-	378	1801	400	94.4\%	-	-	-	9.3	14.9
4/2	Marsh Lane Ahead Right	0	A		1	19	-	418	1978	440	95.1\%	0	115	6	10.2	16.4
C1				PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):			$\begin{aligned} & -5.7 \\ & -5.7 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr)			$\begin{array}{ll}: & 53.22 \\ \\ 53.22\end{array} \quad$ Cycle Time (s): 90					

MTP Results Summary
Network Layout Diagram

Scenario 4: 'PM Peak Base' (FG4: 'PM Peak Base', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

MTP Results Summary
Lane Input Data

Junction: Unnamed Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Whitchurch Lane)	U	D	2	3	60.0	Geom	-	2.50	0.00	Y	Arm 6 Left Arm 7 Ahead	$\begin{gathered} 10.70 \\ \text { Inf } \end{gathered}$
$\begin{gathered} \text { 1/2 } \\ \text { (Whitchurch } \\ \text { Lane) } \end{gathered}$	0	D	2	3	7.0	Geom	-	2.80	0.00	N	Arm 8 Right	21.80
2/1 (Honeypot Lane)	U	B	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 7 Left Arm 8 Ahead	$\begin{gathered} 14.50 \\ \text { Inf } \end{gathered}$
$2 / 2$	O	B	2	3	60.0	Geom	-	290	0.00	N	Arm 5 Right	16.90
Lane)											Arm 8 Ahead	Inf
3/1 (Wemborough Road)	U	C	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 5 Ahead Arm 8 Left	$\begin{gathered} \text { Inf } \\ 14.70 \end{gathered}$
(Wemborough Road)	0	C	2	3	2.0	Geom	-	2.60	0.00	N	Arm 6 Right	20.10
4/1											Arm 5 Left	18.10
(Marsh Lane)											Arm 6 Ahead	Inf
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	0	A	2	3	3.0	Geom	-	2.70	0.00	N	Arm 6 Ahead Arm 7 Right	$\begin{gathered} \text { Inf } \\ 18.40 \end{gathered}$
5/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1	U		2	3	60.0	Inf	-	-	-	-	-	-
7/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1	U		2	3	60.0	Inf	-	-	-	-	-	-

MTP Results Summary
Give-Way Lane Input Data

Junction: Unnamed Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	NonBlocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
$\begin{gathered} 1 / 2 \\ \text { (Whitchurch } \\ \text { Lane) } \end{gathered}$	8/1 (Right)	1439	0	3/1	1.09	All	2.00	-	0.50	2	2.00
2/2 (Honeypot Lane)	5/1 (Right)	1439	0	4/1	1.09	All	2.00	2.00	0.50	2	2.00
				4/2	1.09	All					
$\begin{gathered} 3 / 2 \\ \text { (Wemborough } \\ \text { Road) } \end{gathered}$	6/1 (Right)	1439	0	1/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	7/1 (Right)	1439	0	$\begin{aligned} & 2 / 1 \\ & 2 / 2 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.09 \end{aligned}$	All All	2.00	2.00	0.50	2	2.00

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
4: 'PM Peak Base'	$16: 15$	$17: 15$	$01: 00$	

Traffic Flows, Actual
Actual Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	129	346	86	561	
	B	207	0	202	396	805	
	C	401	142	0	62	605	
	D	66	382	74	0	522	
	Tot.	674	653	622	544	2493	

MTP Results Summary

Network Results

Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	$\begin{aligned} & \text { Deg } \\ & \text { Sat } \\ & \text { (\%) } \end{aligned}$	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	88.5\%	199	275	36	37.6	-
Unnamed Junction	-	-	-		-	-	-	-	-	-	88.5\%	199	275	36	37.6	-
1/1	Whitchurch Lane Left Ahead	U	D		1	31	-	475	1797	639	74.3\%	-	-	-	4.8	11.7
1/2	Whitchurch Lane Right	0	D		1	31	-	86	1904	190	45.2\%	86	0	0	1.3	1.8
2/1	Honeypot Lane Left Ahead	U	B		1	21	-	381	1787	437	87.2\%	-	-	-	6.5	12.2
2/2	Honeypot Lane Right Ahead	0	B		1	21	-	424	1960	479	88.5\%	0	202	5	7.3	13.6
3/1	Wemborough Road Ahead Left	U	C		1	31	-	463	1860	661	70.0\%	-	-	-	4.4	11.1
3/2	Wemborough Road Right	0	C		1	31	-	142	1875	172	82.5\%	113	0	29	3.7	5.5
4/1	Marsh Lane Left Ahead	U	A		1	14	-	247	1810	302	81.9\%	-	-	-	4.6	8.0
4/2	Marsh Lane Ahead Right	0	A		1	14	-	275	1982	330	83.2\%	0	72	2	5.1	8.9
C1				PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):			$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr):			$\begin{aligned} & 37.56 \\ & 37.56 \end{aligned} \quad \text { Cycle Time (s): } \quad 90$					

MTP Results Summary
Network Layout Diagram

Scenario 5: 'AM Peak Base + CD' (FG5: 'AM Peak Base + CD', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

MTP Results Summary
Lane Input Data

Junction: Unnamed Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Whitchurch Lane)	U	D	2	3	60.0	Geom	-	2.50	0.00	Y	Arm 6 Left Arm 7 Ahead	$\begin{gathered} 10.70 \\ \mathrm{Inf} \end{gathered}$
1/2 (Whitchurch Lane)	0	D	2	3	7.0	Geom	-	2.80	0.00	N	Arm 8 Right	21.80
2/1 (Honeypot Lane)	U	B	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 7 Left Arm 8 Ahead	$\begin{gathered} 14.50 \\ \text { Inf } \end{gathered}$
$2 / 2$											Arm 5 Right	16.90
Lane)	0	B	2	3	60.0	Geom	-	2.90	0.00	N	Arm 8 Ahead	Inf
3/1 (Wemborough Road)	U	C	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 5 Ahead Arm 8 Left	$\begin{gathered} \text { Inf } \\ 14.70 \end{gathered}$
3/2 (Wemborough Road)	0	C	2	3	2.0	Geom	-	2.60	0.00	N	Arm 6 Right	20.10
											Arm 5 Left	18.10
(Marsh Lane)	U	A	2	3	60.0	Geom	-	2.35	0.00	Y	Arm 6 Ahead	Inf
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	0	A	2	3	3.0	Geom	-	2.70	0.00	N	Arm 6 Ahead Arm 7 Right	$\begin{gathered} \text { Inf } \\ 18.40 \end{gathered}$
5/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1	U		2	3	60.0	Inf	-	-	-	-	-	-
7/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1	U		2	3	60.0	Inf	-	-	-	-	-	-

MTP Results Summary
Give-Way Lane Input Data

Junction: Unnamed Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	NonBlocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
$\begin{gathered} 1 / 2 \\ \text { (Whitchurch } \\ \text { Lane) } \end{gathered}$	8/1 (Right)	1439	0	3/1	1.09	All	2.00	-	0.50	2	2.00
2/2 (Honeypot Lane)	5/1 (Right)	1439	0	4/1	1.09	All	2.00	2.00	0.50	2	2.00
				4/2	1.09	All					
$\begin{gathered} 3 / 2 \\ \text { (Wemborough } \end{gathered}$ Road)	6/1 (Right)	1439	0	1/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	7/1 (Right)	1439	0	$\begin{aligned} & 2 / 1 \\ & 2 / 2 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.09 \end{aligned}$	All All	2.00	2.00	0.50	2	2.00

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
5: 'AM Peak Base + CD'	$07: 45$	$08: 45$	$01: 00$	

Traffic Flows, Actual
Actual Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	152	363	70	585	
	B	238	0	103	397	738	
	C	499	131	0	74	704	
	D	125	550	139	0	814	
	Tot.	862	833	605	541	2841	

MTP Results Summary

Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	101.7\%	109	344	122	70.3	-
Unnamed Junction	-	-	-		-	-	-	-	-	-	101.7\%	109	344	122	70.3	-
1/1	Whitchurch Lane Left Ahead	U	D		1	30	-	515	1791	617	83.5\%	-	-	-	6.3	14.1
1/2	Whitchurch Lane Right	0	D		1	30	-	70	1904	101	69.2\%	41	0	29	1.9	2.2
2/1	Honeypot Lane Left Ahead	U	B		1	17	-	358	1831	366	97.8\%	-	-	-	11.2	16.5
2/2	Honeypot Lane Right Ahead	0	B		1	17	-	380	1937	387	98.1\%	0	216	22	11.9	17.5
3/1	Wemborough Road Ahead Left	U	C		1	30	-	573	1860	641	89.4\%	-	-	-	8.3	17.3
3/2	Wemborough Road Right	0	C		1	30	-	131	1875	129	101.7\%	68	0	60	8.0	9.6
4/1	Marsh Lane Left Ahead	U	A		1	19	-	387	1802	400	96.6\%	-	-	-	10.8	16.6
4/2	Marsh Lane Ahead Right	O	A		1	19	-	427	1973	438	97.4\%	0	128	11	12.0	18.4
C1				PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):			$\begin{aligned} & -13.0 \\ & -13.0 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr) Total Delay Over All Lanes(pcuHr):			$\begin{array}{ll} 70.26 \\ 70.26 \end{array} \quad \text { Cycle Time (s): } \quad 90$					

MTP Results Summary
Network Layout Diagram

Scenario 6: 'PM Peak Base + CD' (FG6: 'PM Peak Base + CD', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

MTP Results Summary
Lane Input Data

Junction: Unnamed Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Whitchurch Lane)	U	D	2	3	60.0	Geom	-	2.50	0.00	Y	Arm 6 Left Arm 7 Ahead	$\begin{gathered} 10.70 \\ \text { Inf } \end{gathered}$
$\begin{gathered} \text { 1/2 } \\ \text { (Whitchurch } \\ \text { Lane) } \end{gathered}$	0	D	2	3	7.0	Geom	-	2.80	0.00	N	Arm 8 Right	21.80
2/1 (Honeypot Lane)	U	B	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 7 Left Arm 8 Ahead	$\begin{gathered} 14.50 \\ \text { Inf } \end{gathered}$
$2 / 2$	O	B	2	3	60.0	Geom	-	290	0.00	N	Arm 5 Right	16.90
Lane)											Arm 8 Ahead	Inf
3/1 (Wemborough Road)	U	C	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 5 Ahead Arm 8 Left	$\begin{gathered} \text { Inf } \\ 14.70 \end{gathered}$
(Wemborough Road)	0	C	2	3	2.0	Geom	-	2.60	0.00	N	Arm 6 Right	20.10
4/1											Arm 5 Left	18.10
(Marsh Lane)											Arm 6 Ahead	Inf
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	0	A	2	3	3.0	Geom	-	2.70	0.00	N	Arm 6 Ahead Arm 7 Right	$\begin{gathered} \text { Inf } \\ 18.40 \end{gathered}$
5/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1	U		2	3	60.0	Inf	-	-	-	-	-	-
7/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1	U		2	3	60.0	Inf	-	-	-	-	-	-

MTP Results Summary
Give-Way Lane Input Data

Junction: Unnamed Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	NonBlocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
1/2 (Whitchurch Lane)	8/1 (Right)	1439	0	3/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} 2 / 2 \\ \text { (Honeypot } \\ \text { Lane) } \end{gathered}$	5/1 (Right)	1439	0	4/1	1.09	All	2.00	2.00	0.50	2	2.00
				4/2	1.09	All					
$\begin{gathered} 3 / 2 \\ \text { (Wemborough } \end{gathered}$ Road)	6/1 (Right)	1439	0	1/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	7/1 (Right)	1439	0	$\begin{aligned} & 2 / 1 \\ & 2 / 2 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.09 \end{aligned}$	All All	2.00	2.00	0.50	2	2.00

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
6: 'PM Peak Base + CD'	$16: 15$	$17: 15$	$01: 00$	

Traffic Flows, Actual
Actual Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	129	364	86	579	
	B	207	0	220	396	823	
	C	419	160	0	80	659	
	D	66	382	92	0	540	
	Tot.	692	671	676	562	2601	

MTP Results Summary

Network Results

Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	$\begin{aligned} & \text { Deg } \\ & \text { Sat } \\ & \text { (\%) } \end{aligned}$	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	93.0\%	198	288	59	45.9	-
Unnamed Junction	-	-	-		-	-	-	-	-	-	93.0\%	198	288	59	45.9	-
1/1	Whitchurch Lane Left Ahead	U	D		1	32	-	493	1799	660	74.7\%	-	-	-	4.9	12.1
1/2	Whitchurch Lane Right	0	D		1	32	-	86	1904	179	47.9\%	86	0	0	1.3	1.9
2/1	Honeypot Lane Left Ahead	U	B		1	21	-	389	1781	435	89.4\%	-	-	-	7.2	13.0
2/2	Honeypot Lane Right Ahead	0	B		1	21	-	434	1962	480	90.5\%	0	202	5	8.0	14.5
3/1	Wemborough Road Ahead Left	U	C		1	32	-	499	1855	680	73.4\%	-	-	-	4.8	12.0
3/2	Wemborough Road Right	0	C		1	32	-	160	1875	172	93.0\%	112	0	48	5.8	7.9
4/1	Marsh Lane Left Ahead	U	A		1	13	-	257	1811	282	91.2\%	-	-	-	6.6	10.2
4/2	Marsh Lane Ahead Right	0	A		1	13	-	283	1973	307	92.2\%	0	86	6	7.3	11.3
C1				PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):			$\begin{array}{r} -3.4 \\ -3.4 \end{array}$	Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr):			$\begin{aligned} & 45.93 \\ & 45.93 \end{aligned} \quad \text { Cycle Time (s): } \quad 90$					

MTP Results Summary
Network Layout Diagram

Scenario 7: 'AM Peak Base + CD + Dev' (FG7: 'AM Peak Base + CD + Dev', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

MTP Results Summary
Lane Input Data

Junction: Unnamed Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Whitchurch Lane)	U	D	2	3	60.0	Geom	-	2.50	0.00	Y	Arm 6 Left Arm 7 Ahead	$\begin{gathered} 10.70 \\ \text { Inf } \end{gathered}$
$\begin{gathered} \text { 1/2 } \\ \text { (Whitchurch } \\ \text { Lane) } \end{gathered}$	0	D	2	3	7.0	Geom	-	2.80	0.00	N	Arm 8 Right	21.80
2/1 (Honeypot Lane)	U	B	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 7 Left Arm 8 Ahead	$\begin{gathered} 14.50 \\ \text { Inf } \end{gathered}$
$2 / 2$	O	B	2	3	60.0	Geom	-	290	0.00	N	Arm 5 Right	16.90
Lane)											Arm 8 Ahead	Inf
3/1 (Wemborough Road)	U	C	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 5 Ahead Arm 8 Left	$\begin{gathered} \text { Inf } \\ 14.70 \end{gathered}$
(Wemborough Road)	0	C	2	3	2.0	Geom	-	2.60	0.00	N	Arm 6 Right	20.10
4/1											Arm 5 Left	18.10
(Marsh Lane)											Arm 6 Ahead	Inf
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	0	A	2	3	3.0	Geom	-	2.70	0.00	N	Arm 6 Ahead Arm 7 Right	$\begin{gathered} \text { Inf } \\ 18.40 \end{gathered}$
5/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1	U		2	3	60.0	Inf	-	-	-	-	-	-
7/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1	U		2	3	60.0	Inf	-	-	-	-	-	-

MTP Results Summary
Give-Way Lane Input Data

Junction: Unnamed Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	NonBlocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
1/2 (Whitchurch Lane)	8/1 (Right)	1439	0	3/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} \text { 2/2 } \\ \begin{array}{c} \text { Honeypot } \\ \text { Lane) } \end{array} \end{gathered}$	5/1 (Right)	1439	0	4/1	1.09	All	2.00	2.00	0.50	2	2.00
				4/2	1.09	All					
$\begin{gathered} 3 / 2 \\ \text { (Wemborough } \end{gathered}$ Road)	6/1 (Right)	1439	0	1/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	7/1 (Right)	1439	0	$\begin{aligned} & 2 / 1 \\ & 2 / 2 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.09 \end{aligned}$	All All	2.00	2.00	0.50	2	2.00

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
7: 'AM Peak Base + CD + Dev'	$07: 45$	$08: 45$	$01: 00$	

Traffic Flows, Actual
Actual Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	152	388	70	610	
	B	238	0	147	397	782	
	C	506	144	0	89	739	
	D	125	550	186	0	861	
	Tot.	869	846	721	556	2992	

MTP Results Summary

Network Results

MTP Results Summary
Network Layout Diagram

Scenario 8: 'PM Peak Base + CD + Dev' (FG8: 'PM Peak Base + CD + Dev', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

MTP Results Summary
Lane Input Data

Junction: Unnamed Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Whitchurch Lane)	U	D	2	3	60.0	Geom	-	2.50	0.00	Y	Arm 6 Left Arm 7 Ahead	$\begin{gathered} 10.70 \\ \text { Inf } \end{gathered}$
$\begin{gathered} \text { 1/2 } \\ \text { (Whitchurch } \\ \text { Lane) } \end{gathered}$	0	D	2	3	7.0	Geom	-	2.80	0.00	N	Arm 8 Right	21.80
2/1 (Honeypot Lane)	U	B	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 7 Left Arm 8 Ahead	$\begin{gathered} 14.50 \\ \text { Inf } \end{gathered}$
$2 / 2$	O	B	2	3	60.0	Geom	-	290	0.00	N	Arm 5 Right	16.90
Lane)											Arm 8 Ahead	Inf
3/1 (Wemborough Road)	U	C	2	3	60.0	Geom	-	2.70	0.00	Y	Arm 5 Ahead Arm 8 Left	$\begin{gathered} \text { Inf } \\ 14.70 \end{gathered}$
(Wemborough Road)	0	C	2	3	2.0	Geom	-	2.60	0.00	N	Arm 6 Right	20.10
4/1											Arm 5 Left	18.10
(Marsh Lane)											Arm 6 Ahead	Inf
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	0	A	2	3	3.0	Geom	-	2.70	0.00	N	Arm 6 Ahead Arm 7 Right	$\begin{gathered} \text { Inf } \\ 18.40 \end{gathered}$
5/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1	U		2	3	60.0	Inf	-	-	-	-	-	-
7/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1	U		2	3	60.0	Inf	-	-	-	-	-	-

MTP Results Summary
Give-Way Lane Input Data

Junction: Unnamed Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	NonBlocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
1/2 (Whitchurch Lane)	8/1 (Right)	1439	0	3/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} \text { 2/2 } \\ \begin{array}{c} \text { Honeypot } \\ \text { Lane) } \end{array} \end{gathered}$	5/1 (Right)	1439	0	4/1	1.09	All	2.00	2.00	0.50	2	2.00
				4/2	1.09	All					
$\begin{gathered} 3 / 2 \\ \text { (Wemborough } \end{gathered}$ Road)	6/1 (Right)	1439	0	1/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} 4 / 2 \\ \text { (Marsh Lane) } \end{gathered}$	7/1 (Right)	1439	0	$\begin{aligned} & 2 / 1 \\ & 2 / 2 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.09 \end{aligned}$	All All	2.00	2.00	0.50	2	2.00

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
8: 'PM Peak Base + CD + Dev'	$16: 15$	$17: 15$	$01: 00$	

Traffic Flows, Actual
Actual Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	129	366	86	581	
	B	207	0	225	396	828	
	C	431	182	0	103	716	
	D	66	382	96	0	544	
	Tot.	704	693	687	585	2669	

MTP Results Summary

Network Results

Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	$\begin{aligned} & \text { Deg } \\ & \text { Sat } \\ & \text { (\%) } \end{aligned}$	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	97.9\%	212	285	74	53.5	-
Unnamed Junction	-	-	-		-	-	-	-	-	-	97.9\%	212	285	74	53.5	-
1/1	Whitchurch Lane Left Ahead	U	D		1	33	-	495	1799	680	72.8\%	-	-	-	4.6	11.9
1/2	Whitchurch Lane Right	0	D		1	33	-	86	1904	166	51.9\%	86	0	0	1.5	1.9
2/1	Honeypot Lane Left Ahead	U	B		1	20	-	392	1779	415	94.4\%	-	-	-	9.4	15.3
2/2	Honeypot Lane Right Ahead	0	B		1	20	-	436	1962	458	95.2\%	0	197	10	10.4	17.0
3/1	Wemborough Road Ahead Left	U	C		1	33	-	534	1849	699	76.4\%	-	-	-	5.2	13.2
3/2	Wemborough Road Right	0	C		1	33	-	182	1875	186	97.9\%	126	0	56	7.9	10.3
4/1	Marsh Lane Left Ahead	U	A		1	13	-	259	1812	282	91.9\%	-	-	-	6.8	10.5
4/2	Marsh Lane Ahead Right	0	A		1	13	-	285	1971	307	93.0\%	0	89	7	7.6	11.6
C1				PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):			$\begin{aligned} & -8.8 \\ & -8.8 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr):			$\begin{array}{ll}: & 53.50 \\ 53.50\end{array} \quad$ Cycle Time (s): $\quad 90$					

MTP Results Summary
Network Layout Diagram

APPENDIX 7

TRL LIMITED
(C) COPYRIGHT 2010

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS
PICADY 5.1 ANALYSIS PROGRAM
RELEASE 5.0 (JUNE 2010) (Patch 15 Apr 2011)
ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT
BY PERMISSION OF THE CONTROLLER OF HMSO

FOR SALES AND DISTRIBUTION INFORMATION,
PROGRAM ADVICE AND MAINTENANCE CONTACT: TRL SOFTWARE SALES
TEL: CROWTHORNE (01344) 770758, FAX: 770356
EMAIL: software@trl.co.uk

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS/HER RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

RUN INFORMATION

RUN TITLE	: Wemborough Road / Whitchurch Schools
LOCATION	: Whitchurch Playing Fields, Harrow
DATE	$: 20 / 04 / 15$
CLIENT	$:$ Education Funding Agency
ENUMERATOR	$:$ Milestone4 - Newer [MILESTONE4-PC]
JOB NUMBER	$: 14-042$
STATUS	$:$
DESCRIPTION	$:$

MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

| I | |
| :---: | :---: | :--- |
| I | |
| I | |
| I | |
| I | |
| MINOR ROAD (ARM B) | |

I	DATA ITEM			I	MINOR ROAD B I			
I	TOTAL MAJOR	ROAD CARRIAGEWAY WIDTH		I	(W	9.30		I
I	CENTRAL RES	ERVE WIDTH		I	(WCR	0.00		I
I				I				I
I	MAJOR ROAD	RIGHT TURN - WIDTH		I	($\mathrm{WC}-\mathrm{B}$)	2.20		I
I		- VISIBILITY		I	(VC-B)	200.00		I
I		- BLOCKS TRAFFIC	(SPACES)	I		YES	$($	I
I				I				I
I	MINOR ROAD	- VISIBILITY TO LEFT		I	(VB-C)	23.0		I
I		- VISIBILITY TO RIGHT		I	($\mathrm{VB}-\mathrm{A}$)	19.0		I
I		- LANE 1 WIDTH		I	(WB -C)	5.00		I
I		- LANE 2 WIDTH		I	($\mathrm{WB}-\mathrm{A}$)	5.00	M	I

SLOPES AND INTERCEPT

(NB:Streams may be combined, in which case capacity will be adjusted)

I Intercept For Slope For Opposing	Slope For Opposing	I		
I STREAM C-B	STREAM A-C	STREAM A-B	I	
I	689.79	0.23	0.23	I
I				

(NB These values do not allow for any site specific corrections)

TRAFFIC DEMAND DATA

I ARM I FLOW SCALE (\%) I				
I	A	I	100	I
I	B	I	100	I
I	C	I	100	I

Demand set: 2014 Surveyed AM

TIME PERIOD BEGINS 07.30 AND ENDS 09.00
LENGTH OF TIME PERIOD - 90 MIN. LENGTH OF TIME SEGMENT - 15 MIN.

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA THE PERCENTAGE OF HEAVY VEHICLES VARIES OVER TURNING MOVEMENTS

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT
FOR DEMAND SET
AND FOR TIME PERIOD 2014 Surveyed AM

AND FOR TIME PERIOD 1

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	$\begin{gathered} \text { PEDESTRIAN } \\ \text { FLOW } \\ \text { (PEDS/MIN) } \end{gathered}$	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	07.30-07	. 45									I
I	B-C	0.51	10.58	0.049		0.00	0.05	0.7		0.10	I
I	B-A	0.50	6.97	0.072		0.00	0.08	1.1		0.15	I
I	C-AB	1.45	13.07	0.111		0.00	0.21	3.2		0.09	I
I	C-A	4.75									I
I	A-B	1.37									I
I	A-C	6.93									I
I											I

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (R F C) \end{gathered}$	$\begin{gathered} \text { PEDESTRIAN } \\ \text { FLOW } \\ \text { (PEDS/MIN) } \end{gathered}$	START (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	07.45-08	. 00									I
I	B-C	0.61	10.15	0.061		0.05	0.06	0.9		0.10	I
I	B-A	0.60	6.40	0.094		0.08	0.10	1.5		0.17	I
I	C-AB	1.94	13.45	0.144		0.21	0.31	4.6		0.09	I
I	C-A	5.46									I
I	A-B	1.63									I
I	A-C	8.27									I
I											I

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (\mathrm{RFC}) \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	08.15-08	. 30									I
I	B-C	0.75	9.54	0.079		0.08	0.09	1.3		0.11	I
I	B-A	0.73	5.61	0.131		0.15	0.15	2.2		0.21	I
I	C-AB	2.84	14.06	0.202		0.49	0.49	7.5		0.09	I
I	C-A	6.23									I
I	A-B	2.00									I
I	A-C	10.13									I
I											I

TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	$\begin{aligned} & \text { DEMAND/ } \\ & \text { CAPACITY } \\ & \text { (RFC) } \end{aligned}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
08.30-08.45									
B-C	0.61	10.15	0.061		0.09	0.06	1.0		0.10
B-A	0.60	6.40	0.094		0.15	0.10	1.6		0.17
C-AB	1.95	13.46	0.145		0.49	0.32	4.8		0.09
C-A	5.46								
A-B	1.63								
A-C	8.27								

TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	CAPACITY (VEH/MIN)	$\begin{aligned} & \text { DEMAND/ } \\ & \text { CAPACITY } \\ & (R F C) \end{aligned}$	$\begin{gathered} \text { PEDESTRIAN } \\ \text { FLOW } \\ \text { (PEDS/MIN) } \end{gathered}$	START (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
08.45-09.00									
B-C	0.51	10.57	0.049		0.06	0.05	0.8		0.10
B-A	0.50	6.97	0.072		0.10	0.08	1.2		0.15
C-AB	1.46	13.08	0.111		0.32	0.22	3.3		0.09
C-A	4.74								
A-B	1.37								
A-C	6.93								

WARNING NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR	M B-C
TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
07.45	0.1
08.00	0.1
08.15	0.1
08.30	0.1
08.45	0.1
09.00	0.1

QUEUE FOR STREAM B-A

TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
07.45	0.1
08.00	0.1
08.15	0.1
08.30	0.1
08.45	0.1
09.00	0.1

QUEUE FOR STREAM C-AB
TIME NO. OF
SEGMENT VEHICLES
ENDING IN QUEUE
$08.00 \quad 0.3$
$08.15 \quad 0.5$
$08.30 \quad 0.5$
08.450 .3
$09.00 \quad 0.2$

```
TRL
```


* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD
* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.
*******END OF RUN*******

TRAFFIC DEMAND DATA

I ARM I FLOW SCALE (\%) I
$\begin{array}{llll}\text { I A } & \text { I } & 100 & \text { I }\end{array}$

| I B | I | 100 | I |
| :--- | :--- | :--- | :--- | :--- |
| | C | I | 100 |

Demand set: 2014 Surveyed PM

TIME PERIOD BEGINS 16.00 AND ENDS 17.30
LENGTH OF TIME PERIOD - 90 MIN LENGTH OF TIME SEGMENT - 15 MIN.

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA THE PERCENTAGE OF HEAVY VEHICLES VARIES OVER TURNING MOVEMENTS

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT
FOR DEMAND SET
AND FOR TIME PERIOD 2014 Surveyed PM

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (\mathrm{RFC}) \end{gathered}$	$\begin{gathered} \text { PEDESTRIAN } \\ \text { FLOW } \\ \text { (PEDS/MIN) } \end{gathered}$	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	16.00-	. 15									I
I	B-C	0.25	10.79	0.023		0.00	0.02	0.3		0.09	I
I	B-A	0.44	7.14	0.062		0.00	0.06	0.9		0.15	I
I	C-AB	0.45	14.20	0.031		0.00	0.04	0.6		0.07	I
I	C-A	6.63									I
I	A-B	0.14									I
I	A-C	6.69									I
I											I

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	CAPACITY (VEH/MIN)	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (\mathrm{RFC}) \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I
I	16.15-16	. 30									I
I	B-C	0.30	10.41	0.029		0.02	0.03	0.4		0.10	I
I	B-A	0.52	6.60	0.079		0.06	0.09	1.2		0.16	I
I	C-AB	0.59	14.72	0.040		0.04	0.06	0.9		0.07	I
I	C-A	7.86									I
I	A-B	0.16									I
I	A-C	7.99									I
I											I

TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	$\begin{gathered} \text { PEDESTRIAN } \\ \text { FLOW } \\ \text { (PEDS/MIN) } \end{gathered}$	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	```DELAY \\ (VEH.MIN/ \\ TIME SEGMENT)```	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
16.30-16.45									
B-C	0.37	9.87	0.037		0.03	0.04	0.6		0.11
B-A	0.64	5.86	0.110		0.09	0.12	1.8		0.19
$\mathrm{C}-\mathrm{AB}$	0.93	15.79	0.059		0.06	0.10	1.4		0.07
C-A	9.42								
A-B	0.20								
A-C	9.78								

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	CAPACITY (VEH/MIN)	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	$\begin{gathered} \text { PEDESTRIAN } \\ \text { FLOW } \\ \text { (PEDS/MIN) } \end{gathered}$	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	16.45-1	. 00									I
I	B-C	0.37	9.87	0.037		0.04	0.04	0.6		0.11	I
I	B-A	0.64	5.86	0.110		0.12	0.12	1.8		0.19	I
I	C-AB	0.93	15.79	0.059		0.10	0.10	1.4		0.07	I
I	C-A	9.42									I
I	A-B	0.20									I
I	A-C	9.78									I
I											I

WARNING NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR	AM B-C
TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
16.15	0.0
16.30	0.0
16.45	0.0
17.00	0.0
17.15	0.0
17.30	0.0

QUEUE FOR STREAM B-A

TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
16.15	0.1
16.30	0.1
16.45	0.1
17.00	0.1
17.15	0.1
17.30	0.1

QUEUE FOR STREAM C-AB
TIME NO. OF

TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
16.15	0.0
16.30	0.1
16.45	0.1
17.00	0.1
17.15	0.1
17.30	0.0

```
TRL
```

			QUEUEING DELAY INFORMATION OVER WHOLE PERIOD											
IIII	STREAM	I	TOTAL DEMAND		I	* QUEUEING *			I	```INCLUSIVE QUEUEING * * DELAY *```				
		I			* DEL	AY								
		I											(-------	
		I	(VEH)	(VEH/H)	I	(MIN)		(MIN/VEH)	I	(MIN)		(MIN/VEH)	I	
I	B-C	I	27.5	I 18.4	I	2.7	I	0.10	I	2.7	I	0.10	I	
I	B-A	I	48.2	I 32.1	I	8.1	I	0.17	I	8.1	I	0.17	I	
I	C-AB	I	59.1	I 39.4	I	5.8	I	0.10	I	5.8	I	0.10	I	
I	C-A	I	717.2	I 478.1			I		I		I		I	
I	A-B	I	15.1	I 10.1	I		I		I		I		I	
I	A-C	I	733.6	I 489.1			I		I		I		I	
I	ALL	I	1600.8	I 1067.2		16.7	I	0.01	I	16.7	I	0.01	I	

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD
* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.
$* * * * * * * \operatorname{END}$ OF RUN*******

TRAFFIC DEMAND DATA

I ARM I FLOW SCALE (\%) I

I A	I	100	I	
I	B	I	100	I

I C	I	100	I

Demand set: 2020 Base AM

TIME PERIOD BEGINS 07.30 AND ENDS 09.00
LENGTH OF TIME PERIOD - 90 MIN. LENGTH OF TIME SEGMENT - 15 MIN.

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA THE PERCENTAGE OF HEAVY VEHICLES VARIES OVER TURNING MOVEMENTS

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

FOR DEMAND SET	2020 Base AM
AND FOR TIME PERIOD	1

I I I	TIME	DEMAND (VEH/MIN)	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	$\begin{gathered} \text { PEDESTRIAN } \\ \text { FLOW } \\ \text { (PEDS/MIN) } \end{gathered}$	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	07.30-07	. 45									I
I	B-C	0.55	10.43	0.053		0.00	0.06	0.8		0.10	I
I	B-A	0.54	6.78	0.080		0.00	0.09	1.2		0.16	I
I	C-AB	1.59	13.19	0.121		0.00	0.24	3.5		0.09	I
I	C-A	5.00									I
I	A-B	1.46									I
I	A-C	7.38									I
I											I

I	TIME	DEMAND (VEH/MIN)	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	$\begin{aligned} & \text { PEDESTRIAN } \\ & \text { FLOW } \\ & \text { (PEDS/MIN) } \end{aligned}$	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I
I	07.45-08	. 00									I
I	B-C	0.66	9.97	0.066		0.06	0.07	1.0		0.11	I
I	B-A	0.64	6.18	0.104		0.09	0.11	1.7		0.18	I
I	C-AB	2.15	13.60	0.158		0.24	0.35	5.2		0.09	I
I	C-A	5.72									I
I	A-B	1.74									I
I	A-C	8.81									I
I											I

I I I	TIME	DEMAND (VEH/MIN)	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
I	08.00-08.15									
I	B-C	0.81	9.32	0.087		0.07	0.09	1.4		0.12
I	B-A	0.79	5.34	0.148		0.11	0.17	2.5		0.22
I	C-AB	3.18	14.26	0.223		0.35	0.57	8.6		0.09
I	C-A	6.45								
I	A-B	2.13								
I	A-C	10.79								
I										

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (\mathrm{RFC}) \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	08.15-08.30										1
I	B-C	0.81	9.32	0.087		0.09	0.09	1.4		0.12	I
I	B-A	0.79	5.34	0.148		0.17	0.17	2.6		0.22	I
I	C-AB	3.19	14.27	0.223		0.57	0.58	8.7		0.09	I
I	C-A	6.44									I
I	A-B	2.13									I
I	A-C	10.79									I
I											I

TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	$\begin{aligned} & \text { DEMAND/ } \\ & \text { CAPACITY } \\ & \text { (RFC) } \end{aligned}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
08.30-08.45									
B-C	0.66	9.97	0.066		0.09	0.07	1.1		0.11
B-A	0.64	6.17	0.104		0.17	0.12	1.8		0.18
C-AB	2.15	13.61	0.158		0.58	0.36	5.4		0.09
C-A	5.71								
A-B	1.74								
A-C	8.81								

TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	$\begin{aligned} & \text { DEMAND/ } \\ & \text { CAPACITY } \\ & \text { (RFC) } \end{aligned}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
08.45-09.00									
B-C	0.55	10.43	0.053		0.07	0.06	0.9		0.10
B-A	0.54	6.78	0.080		0.12	0.09	1.3		0.16
C-AB	1.60	13.20	0.121		0.36	0.25	3.7		0.09
C-A	4.99								
A-B	1.46								
A-C	7.38								

WARNING NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR	M B-C
TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
07.45	0.1
08.00	0.1
08.15	0.1
08.30	0.1
08.45	0.1
09.00	0.1

QUEUE FOR STREAM B-A

TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
07.45	0.1
08.00	0.1
08.15	0.2
08.30	0.2
08.45	0.1
09.00	0.1

QUEUE FOR STREAM C-AB
TIME NO. OF
SEGMENT VEHICLES
ENDING IN QUEUE
$08.00 \quad 0.3$
$08.15 \quad 0.6$ *
$08.30 \quad 0.6$ *
$08.45 \quad 0.4$
$09.00 \quad 0.2$

```
TRL
```

			QUEUEING DELAY INFORMATION OVER WHOLE PERIOD									
I	STREAM	I	TOTAL DEMAND		I	* QUEUEING *			I	INCLUSIVE QUEUEING * DELAY *		
I		I			I	* DEL	LAY *		I			
I		I										(------
I		I	(VEH)	(VEH/H)	I	(MIN)		(MIN/VEH)	I	(MIN)		(MIN/VEH)
I	B-C	I	60.6	I 40.4	I	6.6	I	0.11	I	6.6	I	0.11
I	B-A	I	59.2	I 39.5	I	11.1	I	0.19	I	11.1	I	0.19
I	C-AB	I	207.9	I 138.6	I	35.2	I	0.17	I	35.2	I	0.17
I	C-A	I	514.8	I 343.2	I		I		I		I	
I	A-B	I	159.7	I 106.4	I		I		I		I	
I	A-C	I	809.3	I 539.6	I		I		I		I	
I	ALL	I	1811.4	I 1207.6		52.9	I	0.03	I	52.9	I	0.03

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD
* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.
*******END OF RUN*******

TRAFFIC DEMAND DATA

I ARM I FLOW SCALE (\%) I
$\begin{array}{llll}\text { I A } & \text { I } & 100 & \text { I }\end{array}$

| I B | I | 100 | I |
| :--- | :--- | :--- | :--- | :--- |
| | C | I | 100 |

Demand set: 2020 Base PM

TIME PERIOD BEGINS 16.00 AND ENDS 17.30
LENGTH OF TIME PERIOD - 90 MIN. LENGTH OF TIME SEGMENT - 15 MIN.

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA THE PERCENTAGE OF HEAVY VEHICLES VARIES OVER TURNING MOVEMENTS

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

FOR DEMAND SET	2020 Base PM
AND FOR TIME PERIOD	2

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (R F C) \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	16.00-1	. 15									I
I	B-C	0.26	10.67	0.025		0.00	0.03	0.4		0.10	I
I	B-A	0.46	6.96	0.067		0.00	0.07	1.0		0.15	I
I	C-AB	0.48	14.37	0.034		0.00	0.05	0.7		0.07	I
I	C-A	7.04									I
I	A-B	0.15									I
I	A-C	7.11									I
I											I

I I I	TIME	DEMAND (VEH/MIN)	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	$\begin{aligned} & \text { PEDESTRIAN } \\ & \text { FLOW } \\ & \text { (PEDS/MIN) } \end{aligned}$	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	16.15-1	. 30									I
I	B-C	0.31	10.26	0.031		0.03	0.03	0.5		0.10	I
I	B-A	0.55	6.39	0.087		0.07	0.09	1.4		0.17	I
I	C-AB	0.70	15.18	0.046		0.05	0.07	1.0		0.07	I
I	C-A	8.28									I
I	A-B	0.18									I
I	A-C	8.50									I
I											I

I I I	TIME	DEMAND (VEH/MIN)	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
I	16.30-16.45									
I	B-C	0.39	9.68	0.040		0.03	0.04	0.6		0.11
I	B-A	0.68	5.61	0.121		0.09	0.14	2.0		0.20
I	C-AB	1.04	16.08	0.065		0.07	0.11	1.6		0.07
I	C-A	9.97								
I	A-B	0.22								
I	A-C	10.40								
I										

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (\mathrm{RFC}) \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	16.45-1	. 00									1
I	B-C	0.39	9.68	0.040		0.04	0.04	0.6		0.11	I
I	B-A	0.68	5.61	0.121		0.14	0.14	2.0		0.20	I
I	C-AB	1.04	16.08	0.065		0.11	0.11	1.6		0.07	I
I	C-A	9.97									I
I	A-B	0.22									I
I	A-C	10.40									I
I											I

WARNING NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR	AM B-C
TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
16.15	0.0
16.30	0.0
16.45	0.0
17.00	0.0
17.15	0.0
17.30	0.0

QUEUE FOR STREAM B-A

TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
16.15	0.1
16.30	0.1
16.45	0.1
17.00	0.1
17.15	0.1
17.30	0.1

QUEUE FOR STREAM C-AB
TIME NO. OF

TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
16.15	0.0
16.30	0.1
16.45	0.1
17.00	0.1
17.15	0.1
17.30	0.0

```
TRL
```

			QUEUEING DELAY INFORMATION OVER WHOLE PERIOD										
IIII	STREAM	I	TOTAL DEMAND		I	* QUEUEING *			I * INCLUSIVE QUEUEING *				
		I			I	* DEL	AY		I	* DE	LA		I
		I		(VEH/H)	I							(-------	
		I	I (VEH)			(MIN)	(MIN/VEH)		I	(MIN)	(MIN/VEH)		I
I	B-C	I	28.9	I 19.3	I	2.9	I	0.10	I	2.9	I	0.10	I
I	B-A	I	50.9	I 34.0	I	9.0	I	0.18	I	9.0	I	0.18	I
I	C-AB	I	66.9	I 44.6	I	6.7	I	0.10	I	6.7	I	0.10	I
I	C-A	I	758.9	I 506.0			I		I		I		I
I	A-B	I	16.5	I 11.0	I		I		I		I		I
I	A-C	I	780.4	I 520.3			I		I		I		I
I	ALL	I	1702.6	I 1135.1		18.6	I	0.01	I	18.6	I	0.01	I

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD
* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.
********END OF RUN*******

TRAFFIC DEMAND DATA
--
I ARM I FLOW SCALE (\%) I

		I	100	I
I	B	I	100	I

I C I	100	I

Demand set: Base +CD AM

TIME PERIOD BEGINS 07.30 AND ENDS 09.00
LENGTH OF TIME PERIOD - 90 MIN. LENGTH OF TIME SEGMENT - 15 MIN.

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA THE PERCENTAGE OF HEAVY VEHICLES VARIES OVER TURNING MOVEMENTS

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

FOR DEMAND SET	Base + CD AM
AND FOR TIME PERIOD	1

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	CAPACITY (VEH/MIN)	$\begin{aligned} & \text { DEMAND/ } \\ & \text { CAPACITY } \\ & \text { (RFC) } \end{aligned}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I
I	07.30-07	. 45									I
I	B-C	1.23	10.08	0.122		0.00	0.14	2.0		0.11	I
I	B-A	1.22	6.50	0.187		0.00	0.23	3.2		0.19	I
I	C-AB	2.79	13.06	0.213		0.00	0.43	6.4		0.10	I
I	C-A	4.48									I
I	A-B	2.13									I
I	A-C	7.38									I
I											I

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (\mathrm{RFC}) \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	07.45-08	. 00									I
I	B-C	1.47	9.52	0.154		0.14	0.18	2.6		0.12	I
I	B-A	1.45	5.83	0.249		0.23	0.33	4.7		0.23	I
I	C-AB	3.82	13.50	0.283		0.43	0.66	10.0		0.10	I
I	C-A	4.85									I
I	A-B	2.55									I
I	A-C	8.81									I
I											I

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (\mathrm{RFC}) \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	08.15-08.30										1
I	B-C	1.80	8.70	0.207		0.26	0.26	3.9		0.14	I
I	B-A	1.78	4.91	0.363		0.55	0.56	8.3		0.32	I
I	C-AB	5.65	14.13	0.400		1.18	1.20	18.3		0.12	I
I	C-A	4.98									I
I	A-B	3.12									I
I	A-C	10.79									I
I											I

TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	$\begin{aligned} & \text { DEMAND/ } \\ & \text { CAPACITY } \\ & \text { (RFC) } \end{aligned}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
08.30-08.45									
B-C	1.47	9.51	0.154		0.26	0.18	2.8		0.12
B-A	1.45	5.82	0.250		0.56	0.34	5.3		0.23
C-AB	3.84	13.52	0.284		1.20	0.69	10.5		0.10
C-A	4.83								
A-B	2.55								
A-C	8.81								

TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	CAPACITY (VEH/MIN)	$\begin{aligned} & \text { DEMAND/ } \\ & \text { CAPACITY } \\ & \text { (RFC) } \end{aligned}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
08.45-09.00									
B-C	1.23	10.07	0.122		0.18	0.14	2.2		0.11
B-A	1.22	6.48	0.188		0.34	0.23	3.7		0.19
C-AB	2.80	13.08	0.214		0.69	0.45	6.8		0.10
C-A	4.46								
A-B	2.13								
A-C	7.38								

WARNING NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR	M B-C
TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
07.45	0.1
08.00	0.2
08.15	0.3
08.30	0.3
08.45	0.2
09.00	0.1

QUEUE FOR STREAM B-A

TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
07.45	0.2
08.00	0.3
08.15	0.6
08.30	0.6
08.45	0.3
09.00	0.2

QUEUE FOR STREAM C-AB
TIME NO. OF
SEGMENT VEHICLES
ENDING IN QUEUE
$07.45 \quad 0.4$
$08.00 \quad 0.7$ *

08.15	1.2	*
08.30	1.2	*
08.45	0.7	*

08.45 - 0.7 *

```
TRL
```


* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD
* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.
$* * * * * * * \operatorname{END}$ OF RUN*******

TRAFFIC DEMAND DATA
--
I ARM I FLOW SCALE (\%) I

I A	I	100	I	
I	B	I	100	I

I C I	100	I

Demand set: Base +CD PM
TIME PERIOD BEGINS 16.00 AND ENDS 17.30
LENGTH OF TIME PERIOD - 90 MIN.
LENGTH OF TIME SEGMENT - 15 MIN.

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA THE PERCENTAGE OF HEAVY VEHICLES VARIES OVER TURNING MOVEMENTS

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

FOR DEMAND SET	Base + CD PM
AND FOR TIME PERIOD	2

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (R F C) \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	16.00-1	. 15									I
I	B-C	0.94	10.32	0.091		0.00	0.10	1.4		0.11	I
I	B-A	1.14	6.67	0.171		0.00	0.20	2.9		0.18	I
I	C-AB	1.85	14.42	0.129		0.00	0.28	4.2		0.08	I
I	C-A	6.35									I
I	A-B	0.83									I
I	A-C	7.11									I
I											I

I I I	TIME	DEMAND (VEH/MIN)	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	$\begin{aligned} & \text { PEDESTRIAN } \\ & \text { FLOW } \\ & \text { (PEDS/MIN) } \end{aligned}$	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	16.15-1	. 30									I
I	B-C	1.12	9.81	0.115		0.10	0.13	1.9		0.12	I
I	B-A	1.36	6.04	0.226		0.20	0.29	4.1		0.21	I
I	C-AB	2.61	15.13	0.173		0.28	0.42	6.4		0.08	I
I	C-A	7.19									I
I	A-B	0.99									I
I	A-C	8.50									I
I											I

I I I	TIME	DEMAND (VEH/MIN)	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
I	16.30-16.45									
I	B-C	1.38	9.08	0.152		0.13	0.18	2.6		0.13
I	B-A	1.67	5.18	0.322		0.29	0.46	6.6		0.28
I	C-AB	3.95	16.09	0.245		0.42	0.70	10.6		0.08
I	C-A	8.06								
I	A-B	1.21								
I	A-C	10.40								
I										

I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (\mathrm{RFC}) \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	16.45-17.00										I
I	B-C	1.38	9.07	0.152		0.18	0.18	2.7		0.13	I
I	B-A	1.67	5.18	0.323		0.46	0.47	7.0		0.28	I
I	C-AB	3.96	16.10	0.246		0.70	0.71	10.8		0.08	I
I	C-A	8.05									I
I	A-B	1.21									I
I	A-C	10.40									I
I											I

WARNING NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR	AM B-C
TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
16.15	0.1
16.30	0.1
16.45	0.2
17.00	0.2
17.15	0.1
17.30	0.1

QUEUE FOR STREAM B-A

TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
16.15	0.2
16.30	0.3
16.45	0.5
17.00	0.5
17.15	0.3
17.30	0.2

QUEUE FOR STREAM C-AB
TIME NO. OF
SEGMENT VO. OF
ENDING IN QUEUE
16.150 .3
$16.30 \quad 0.4$
$16.45 \quad 0.7$ *
17.000 .7 *

17.15	0.4

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD
* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.
*******EEND OF RUN*******

TRAFFIC DEMAND DATA

I ARM I FLOW SCALE (\%) I

I A	I	100	I

I A	I	100	I	
I	B	I	100	I

Demand set: Base + CD + Dev AM

TIME PERIOD BEGINS 07.30 AND ENDS 09.00
LENGTH OF TIME PERIOD - 90 MIN.
LENGTH OF TIME SEGMENT - 15 MIN.

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA THE PERCENTAGE OF HEAVY VEHICLES VARIES OVER TURNING MOVEMENTS

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

FOR DEMAND SET	Base + CD + Dev AM
AND FOR TIME PERIOD	1

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	$\begin{gathered} \text { PEDESTRIAN } \\ \text { FLOW } \\ \text { (PEDS/MIN) } \end{gathered}$	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	07.30-07	. 45									I
I	B-C	1.67	9.90	0.169		0.00	0.20	2.9		0.12	I
I	B-A	1.39	5.95	0.234		0.00	0.30	4.2		0.22	I
I	C-AB	5.41	12.97	0.417		0.00	1.04	15.1		0.13	I
I	C-A	3.32									I
I	A-B	2.72									I
I	A-C	7.38									I
I											I

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	START (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \end{gathered}$ (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	07.45-08	. 00									I
I	B-C	1.99	9.27	0.215		0.20	0.27	4.0		0.14	I
I	B-A	1.66	5.17	0.322		0.30	0.46	6.6		0.28	I
I	C-AB	7.39	13.38	0.552		1.04	1.84	27.7		0.17	I
I	C-A	3.02									I
I	A-B	3.25									I
I	A-C	8.81									I
I											I

I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
I	08.00-08.15									
I	B-C	2.44	8.30	0.294		0.27	0.41	5.9		0.17
I	B-A	2.04	4.10	0.496		0.46	0.93	12.7		0.47
I	C-AB	11.04	14.02	0.787		1.84	5.25	75.8		0.31
I	C-A	1.72								
I	A-B	3.98								
I	A-C	10.79								
I										

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (\mathrm{RFC}) \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	08.15-08.30										I
I	B-C	2.44	8.27	0.295		0.41	0.41	6.2		0.17	I
I	B-A	2.04	4.05	0.502		0.93	0.97	14.4		0.49	I
I	C-AB	11.20	14.12	0.793		5.25	5.74	90.2		0.36	I
I	C-A	1.55									I
I	A-B	3.98									I
I	A-C	10.79									I
I											I

TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	$\begin{aligned} & \text { DEMAND/ } \\ & \text { CAPACITY } \\ & \text { (RFC) } \end{aligned}$	PEDESTRIAN FLOW (PEDS/MIN)	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)
08.30-08.45									
B-C	1.99	9.24	0.216		0.41	0.28	4.3		0.14
B-A	1.66	5.10	0.326		0.97	0.50	8.0		0.30
$C-A B$	7.54	13.52	0.557		5.74	2.03	34.3		0.18
C-A	2.88								
A-B	3.25								
A-C	8.81								

TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	CAPACITY (VEH/MIN)	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ \text { (RFC) } \end{gathered}$	$\begin{gathered} \text { PEDESTRIAN } \\ \text { FLOW } \\ \text { (PEDS/MIN) } \end{gathered}$	$\begin{gathered} \text { START } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	```DELAY \\ (VEH.MIN/ \\ TIME SEGMENT)```	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY I PER ARRIVING VEHICLE (MIN) I
08.45-09.00									
B-C	1.67	9.88	0.169		0.28	0.21	3.2		0.12
B-A	1.39	5.92	0.235		0.50	0.31	4.9		0.22 I
C-AB	5.46	13.02	0.420		2.03	1.10	16.8		0.14
C-A	3.26								I
A-B	2.72								I
A-C	7.38								I

WARNING NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR	AM B-C
TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
07.45	0.2
08.00	0.3
08.15	0.4
08.30	0.4
08.45	0.3
09.00	0.2

QUEUE FOR STREAM B-A

TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
07.45	0.3
08.00	0.5
08.15	0.9
08.30	1.0
08.45	0.5
09.00	0.3

QUEUE FOR STREAM C-AB
TIME NO. OF
SEGMENT VEHICLES
ENDING IN QUEUE
$07.45 \quad 1.0$
08.001 .8 *

08.15	5.3	$* * * * *$
08.30	5.7	$* * * * *$

08.45 2.0 **
09.001 .1 *

			QUEUEING DELAY INFORMATION OVER WHOLE PERIOD										
I	STREAM	I	TOTAL	DEMAND	I	* QUEU	UEING	G *	I	INCLUSIV	Q	UEUEING *	I
I		I			I	* DEL	AY		I	* DE	AY	*	I
I		I											
I		I	(VEH)	(VEH/H)	I	(MIN)		MIN/VEH)	I	(MIN)		(MIN/VEH)	I
I	B-C	I	183.1	I 122.0	I	26.5	I	0.14	I	26.5	I	0.14	I
I	B-A	I	152.8	I 101.9	I	50.8	I	0.33	I	50.8	I	0.33	I
I	C-AB	I	720.6	I 480.4	I	259.9	I	0.36	I	259.9	I	0.36	I
I	C-A	I	236.1	I 157.4	I		I		I		I		I
I	A-B	I	298.7	I 199.1	I		I		I		I		I
I	A-C	I	809.3	I 539.6			I		I		I		I
I	ALL	I	2400.5	I 1600.3		337.1	I	0.14	I	337.2	I	0.14	I

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD
* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.
*******END OF RUN*******

TRAFFIC DEMAND DATA

I ARM I FLOW SCALE (\%) I

I A	I	100	I

I A	I	100	I	
I	B	I	100	I

Demand set: Base + CD + Dev PM

TIME PERIOD BEGINS 16.00 AND ENDS 17.30
LENGTH OF TIME PERIOD - 90 MIN . LENGTH OF TIME SEGMENT - 15 MIN.

DEMAND FLOW PROFILES ARE SYNTHESISED FROM TURNING COUNT DATA

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA THE PERCENTAGE OF HEAVY VEHICLES VARIES OVER TURNING MOVEMENTS

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

FOR DEMAND SET	Base $+\mathrm{CD}+\mathrm{Dev}$ PM
AND FOR TIME PERIOD	2

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	$\begin{aligned} & \text { CAPACITY } \\ & \text { (VEH/MIN) } \end{aligned}$	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (\mathrm{RFC}) \end{gathered}$	$\begin{gathered} \text { PEDESTRIAN } \\ \text { FLOW } \\ \text { (PEDS/MIN) } \end{gathered}$	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	16.00-1	. 15									I
I	B-C	1.66	10.19	0.162		0.00	0.19	2.8		0.12	I
I	B-A	1.43	6.62	0.216		0.00	0.27	3.9		0.19	I
I	C-AB	2.13	14.41	0.148		0.00	0.32	4.8		0.08	I
I	C-A	6.22									I
I	A-B	0.88									I
I	A-C	7.11									I
I											I

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	CAPACITY (VEH/MIN)	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (\mathrm{RFC}) \end{gathered}$	$\begin{aligned} & \text { PEDESTRIAN } \\ & \text { FLOW } \\ & \text { (PEDS/MIN) } \end{aligned}$	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	16.15-1	. 30									I
I	B-C	1.98	9.65	0.205		0.19	0.26	3.7		0.13	I
I	B-A	1.71	5.98	0.285		0.27	0.39	5.6		0.23	I
I	C-AB	3.00	15.12	0.198		0.32	0.49	7.3		0.08	I
I	C-A	6.96									I
I	A-B	1.05									I
I	A-C	8.50									I
I											I

I I I	TIME	$\begin{array}{r} \text { DEMAND } \\ \text { (VEH/MIN) } \end{array}$	CAPACITY (VEH/MIN)	$\begin{gathered} \text { DEMAND/ } \\ \text { CAPACITY } \\ (R F C) \end{gathered}$	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	$\begin{gathered} \text { END } \\ \text { QUEUE } \\ \text { (VEHS) } \end{gathered}$	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	AVERAGE DELAY PER ARRIVING VEHICLE (MIN)	I I I
I	16.45-17.00										I
I	B-C	2.42	8.84	0.274		0.37	0.37	5.6		0.16	I
I	B-A	2.09	5.10	0.410		0.67	0.68	10.2		0.33	I
I	C-AB	4.54	16.09	0.282		0.82	0.83	12.6		0.09	I
I	C-A	7.66									I
I	A-B	1.28									I
I	A-C	10.40									I
I											I

WARNING NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR	AM B-C
TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
16.15	0.2
16.30	0.3
16.45	0.4
17.00	0.4
17.15	0.3
17.30	0.2

QUEUE FOR STREAM B-A

TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
16.15	0.3
16.30	0.4
16.45	0.7
17.00	0.7
17.15	0.4
17.30	0.3

QUEUE FOR STREAM C-AB
TIME NO. OF

TIME	NO. OF
SEGMENT	VEHICLES
ENDING	IN QUEUE
16.15	0.3
16.30	0.5
16.45	0.8
17.00	0.8
17.15	*
17.30	0.5

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

III	STREAM	I	TOTAL DEMAND		I	* QUEUEING *			I	INCLUSIVE QUEUEING * DELAY *				
		I			* DELAY *	I								
		I												I
I		I	(VEH)	(VEH/H)	I	(MIN)		(MIN/VEH)	I	(MIN)		(MIN/VEH)	I	
I	B-C	I	181.7	I 121.1	I	24.6	I	0.14	I	24.6	I	0.14	I	
I	B-A	I	156.9	I 104.6	I	39.9	I	0.25	I	39.9	I	0.25	I	
I	C-AB	I	290.3	I 193.5	I	49.7	I	0.17	I	49.7	I	0.17	I	
I	C-A	I	625.1	I 416.7	I		I		I		I		I	
I	A-B	I	96.3	I 64.2	I		I		I		I		I	
I	A-C	I	780.4	I 520.3	I		I		I		I		I	
I	ALL	I	2130.7	I 1420.5	I	114.2	I	0.05	I	114.2	I	0.05	I	

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD
* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD
* THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS

A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.
*******END OF RUN*******

APPENDIX 8

ARCADY 7

Version: 7.1.1.245 [9th June 2011]
© Copyright Transport Research Laboratory 2011

For sales and distribution information, program advice and maintenance, contact TRL:
Tel: +44 (0)1344770758 E-mail: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

File: S:\14 jobs\042 Avanti House Secondary School, Whitchurch Playing Fields\Technical Assessments\ARCADY\Abercorn Rd-Wmborough Rd-St Andrews Drive.arc7
Report generation date: 02/06/2015 13:13:33

Summary of roundabout performance

	AM				PM			
	Queue (Veh)	Delay (min)	RFC	LOS	Queue (Veh)	Delay (min)	RFC	LOS
	(Default Analysis Set) - 2014 Surveyed Flows							
Arm A	2.80	0.26	0.74	C	4.90	0.40	0.84	C
Arm B	1.38	0.20	0.58	B	1.91	0.29	0.66	C
Arm C	1.74	0.18	0.64	B	1.86	0.20	0.65	B
Arm D	3.52	0.34	0.79	C	2.17	0.23	0.69	B
	(Default Analysis Set) - 2020 Base Flows							
Arm A	3.94	0.36	0.81	C	8.47	0.66	0.91	E
Arm B	1.74	0.24	0.64	B	2.65	0.38	0.74	C
Arm C	2.22	0.22	0.70	B	2.44	0.25	0.72	B
Arm D	5.38	0.50	0.86	D	2.86	0.29	0.75	C
	(Default Analysis Set) - Base + CD							
Arm A	6.07	0.51	0.87	D	16.08	1.13	0.98	F
Arm B	2.13	0.29	0.69	C	3.44	0.48	0.79	D
Arm C	2.67	0.26	0.73	C	2.95	0.29	0.76	C
Arm D	7.65	0.70	0.90	E	3.59	0.35	0.79	C
	(Default Analysis Set) - Base + CD + Dev							

Arm A	6.82	0.57	0.89	D	21.27	1.41	1.00	F
Arm B	2.50	0.32	0.72	C	3.56	0.49	0.80	D
Arm C	3.12	0.29	0.77	C	2.99	0.29	0.76	C
Arm D	10.91	0.97	0.95	F	3.62	0.35	0.79	C

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle.

2014 Surveyed Flows - AM runs from 07:45:00 to 09:15:00
2014 Surveyed Flows - PM runs from 16:45:00 to 18:15:00
2020 Base Flows - AM runs from 07:45:00 to 09:15:00
2020 Base Flows - PM runs from 16:45:00 to 18:15:00
Base + CD - AM runs from 07:45:00 to 09:15:00
Base $+C D-P M$ runs from 16:45:00 to 18:15:00
Base $+C D+D e v-A M$ runs from 07:45:00 to 09:15:00
Base $+C D+$ Dev $-P M$ runs from 16:45:00 to 18:15:00
File summary
File Description

Title	Wemborough Road/Abrecorn Road/ St Andrew's Drive
Location	
Site Number	
Date	$14 / 10 / 2014$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	$14-042$
Enumerator	Milestone4-PC\Milestone4 - Newer
Description	

Analysis Options

RFC Threshold	Vehicle Length (m)	Do Queue Variations
0.85	5.75	

Sorting and Display

Show Arm Names	Arm Grouping	Sorting Direction	Sorting Type	Data Matrix Style	Time Style
	Order	Ascending	Numerical	By Destination	Absolute Time

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	Veh	Veh	perHour	min	- Min	perMin

A1 - (Default Analysis Set) - D1 - 2014 Surveyed Flows, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Include In Report	Use Specific Demand Set	Demand Set	Locked	Network Flow Scaling Factor (\%)	Network Capacity Scaling Factor (\%)	Reason For Scaling Factors
(Default Analysis Set)		Yes		(D1)		100.000	100.000	

Demand Set Details

Name	Scenari o Name	Time Perio d Nam e	Descripti on	Locke d	Run Automatica Ily	Use Relationsh ip	Relationsh ip	Start Time (HH:m m)	Finish Time (HH:m m)	Time Perio d Lengt h (min)	Time Segme nt Length (min)	$\begin{array}{\|c} \text { Traffi } \\ \text { c } \\ \text { Profil } \\ \text { e } \\ \text { Type } \end{array}$
2014 Survey ed Flows, AM	2014 Survey ed Flows	AM			Yes			07:45	09:15	90	15	$\begin{gathered} \text { ONE } \\ \text { HOU } \\ \text { R } \end{gathered}$

Roundabout Network

Roundabout Type(s)

ID	Name	Arm Order	Roundabout Type	Grade Separated	Large Roundabout	Do Geometric Delay
1	(untitled)	A,B,C,D	Standard			

Roundabout Network Options

Driving Side	Lighting	Road Surface	In London
Left	Normal/unknown	$(($ Mini-roundabouts only $))$	

Arms

Arms

ID	Name	Description
A	Wemborough Road (E)	
B	St Andrew's Drive	
C	Wemborough Road (W)	
D	Abercorn Road	

Capacity Options
Arm Minimum Capacity (PCU/hr) Maximum Capacity (PCU/hr) Assume Flat Start Profile Initial Queue (PCU)

A	0.00	99999.00		0.00
B	0.00	99999.00		0.00
C	0.00	99999.00		0.00
D	0.00	99999.00		0.00

Standard Geometry

Arm	V - Approach road half-width (m)	E - Entry width (m)	I' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
A	3.70	4.50	3.40	7.00	19.00	16.50	
B	3.45	4.10	2.10	6.00	19.00	15.00	
C	4.20	4.45	2.80	6.00	19.00	10.00	
D	3.35	4.80	2.60	6.30	19.00	14.00	

Pedestrian Crossings

Arm	Crossing Type
A	None
B	None
C	None
D	None

Arm Slopel Intercept and Capacity

Slope and Intercept used in model

Arm	Enter Directly	Slope	Intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
A		$(($ calculated))	$(($ calculated))	0.548	1204.008
B		$(($ calculated $))$	$(($ calculated) $)$	0.516	1073.293
C	((calculated))	((calculated))	0.562	1271.998	
D	$(($ calculated) $)$	((calculated))	0.528	1113.227	

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

| Default | Vehicle
 Mix | Vehicle
 Mix | Vehicle
 Mix
 Vehicle
 Mix | Varies
 Over
 Time | Varies
 Over
 Turn | Paries
 Over
 Entry | Vehicle Mix
 Source | Factor
 for a
 HV
 (PCU) | Default
 Turning
 Proportions | Estimate
 from
 entrylexit
 counts |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Turning |
| :---: |
| Proportions |
| Vary Over |
| Time | | Turning
 Proportions
 Vary Over
 Turn |
| :---: |

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (\%)	PHF
A	ONE HOUR	Yes	593.00	100.000	N/A
B	ONE HOUR	Yes	376.00	100.000	N/A
C	ONE HOUR	Yes	531.00	100.000	N/A
D	ONE HOUR	Yes	586.00	100.000	N/A

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
1	A	446.44	459.30	N/A	N/A
1	B	283.07	287.51	N/A	N/A
1	C	399.76	410.31	N/A	N/A
1	D	441.17	447.08	N/A	N/A
2	A	533.09	548.45	N/A	N/A
2	B	338.02	343.31	N/A	N/A
2	C	477.36	489.95	N/A	N/A
2	D	526.80	533.85	N/A	N/A
3	A	652.91	671.72	N/A	N/A
3	B	413.98	420.47	N/A	N/A
3	C	584.64	600.07	N/A	N/A
3	D	645.20	653.83	N/A	N/A
4	A	652.91	671.72	N/A	N/A
4	B	413.98	420.47	N/A	N/A
4	C	584.64	600.07	N/A	N/A
4	D	645.20	653.83	N/A	N/A
5	A	533.09	548.45	N/A	N/A
5	B	338.02	343.31	N/A	N/A
5	C	477.36	489.95	N/A	N/A
5	D	526.80	533.85	N/A	N/A
6	A	446.44	459.30	N/A	N/A
6	B	283.07	287.51	N/A	N/A
6	C	399.76	410.31	N/A	N/A
6	D	441.17	447.08	N/A	N/A

Turning Proportions

Turning Counts or Proportions (Veh/hr) - Roundabout 1 (for whole period)

	To					
		A	B	C	D	
	A	1.000	62.000	346.000	184.000	
	B	60.000	1.000	38.000	277.000	
	C	343.000	69.000	1.000	118.000	
	D	165.000	348.000	66.000	7.000	

Turning Proportions (Veh) - Roundabout 1 (for whole period)

	To				
From		A	B	C	D
	A	0.00	0.10	0.58	0.31
	B	0.16	0.00	0.10	0.74
	C	0.65	0.13	0.00	0.22
	D	0.28	0.59	0.11	0.01

Vehicle Mix

Average PCU Per Vehicle - Roundabout 1 (for whole period)

	To				
	B	1.000	1.000	1.053	1.014
	A	1.000	1.016	1.038	1.016
	C	1.035	1.000	1.000	1.017
	D	1.012	1.014	1.015	1.000

Heavy Vehicle Percentages - Roundabout 1 (for whole period)

	To					
		A	B	C	D	
	A	0.000	1.600	3.800	1.600	
	B	0.000	0.000	5.300	1.400	
	C	3.500	0.000	0.000	1.700	
	D	1.200	1.400	1.500	0.000	

Results

Results Summary

| Arm | Max
 RFC | Max
 Delay
 (min) | Max
 Queue
 (Veh) | Max
 LOS | Total
 Demand
 (Veh/hr) | Total
 Arrivals
 (Veh) | Total
 Queueing
 Delay
 (Veh-min) | Average
 Queueing
 Delay
 (min) | Rate Of
 Queueing
 Delay
 (Veh-
 min/min) | Inclusive
 Queueing
 Total
 Delay
 (Veh-min) | Inclusive
 Queueing
 Average
 Delay
 (min) | Slope | Intercept |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (PCU/hr) | | | | | | | | | | | | | |

Main Results

Main results: (07:45-08:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	446.44	111.61	443.09	425.34	367.40	0.00	972.09	834.91	0.459	0.00	0.84
B	283.07	70.77	280.99	358.48	452.01	0.00	820.70	618.64	0.345	0.00	0.52
C	399.76	99.94	397.21	336.95	396.05	0.00	1019.52	781.43	0.392	0.00	0.64
D	441.17	110.29	437.46	437.98	355.27	0.00	908.90	719.93	0.485	0.00	0.93

Main results: (08:00-08:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	533.09	133.27	531.22	509.94	440.53	0.00	932.64	834.91	0.572	0.84	1.31
B	338.02	84.50	337.04	429.82	541.92	0.00	773.75	618.65	0.437	0.52	0.76

C	477.36	119.34	476.14	403.99	474.98	0.00	975.72	781.43	0.489	0.64	0.94
D	526.80	131.70	524.56	525.20	425.91	0.00	871.20	719.93	0.605	0.93	1.49

Main results: (08:15-08:30)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	652.90	163.23	647.36	622.04	535.94	0.00	881.17	834.91	0.741	1.31	2.69
B	413.98	103.50	411.65	523.08	660.21	0.00	711.98	618.65	0.581	0.76	1.35
C	584.64	146.16	581.61	492.24	579.62	0.00	917.65	781.43	0.637	0.94	1.70
D	645.20	161.30	637.74	640.99	520.23	0.00	820.85	719.93	0.786	1.49	3.35

Main results: (08:30-08:45)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow $($ Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	652.90	163.23	652.49	626.19	541.22	0.00	878.32	834.91	0.743	2.69	2.80
B	413.98	103.50	413.86	528.04	665.66	0.00	709.14	618.65	0.584	1.35	1.38
C	584.64	146.16	584.50	496.23	583.30	0.00	915.61	781.43	0.639	1.70	1.74
D	645.20	161.30	644.55	644.95	522.86	0.00	819.45	719.93	0.787	3.35	3.52

Main results: (08:45-09:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	533.09	133.27	538.76	516.03	448.26	0.00	928.46	834.91	0.574	2.80	1.38
B	338.02	84.50	340.34	437.10	549.92	0.00	769.58	618.65	0.439	1.38	0.80
C	477.36	119.34	480.38	409.86	480.41	0.00	972.71	781.43	0.491	1.74	0.98
D	526.80	131.70	534.54	531.04	429.76	0.00	869.14	719.93	0.606	3.52	1.58

Main results: (09:00-09:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	446.44	111.61	448.50	430.08	372.36	0.00	969.41	834.91	0.461	1.38	0.87
B	283.07	70.77	284.11	363.23	457.63	0.00	817.77	618.64	0.346	0.80	0.54
C	399.76	99.94	401.06	341.12	400.62	0.00	1016.98	781.43	0.393	0.98	0.65
D	441.17	110.29	443.65	442.90	358.79	0.00	907.02	719.93	0.486	1.58	0.96

Queueing Delay Results

Queueing Delay results: (07:45-08:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	12.01	0.80	0.113	A	A
B	7.51	0.50	0.111	A	A
C	9.23	0.62	0.096	A	A
D	13.24	0.88	0.126	A	A

Queueing Delay results: (08:00-08:15)

Arm	Queueing Total	Queueing Rate Of	Average Delay Per	Unsignalised Level	Signalised Level

	Delay (Veh-min)	Delay (Veh-min/min)	Arriving Vehicle (min)	Of Service	Of Service
A	18.71	1.25	0.149	A	A
B	11.06	0.74	0.137	A	A
C	13.67	0.91	0.120	A	A
D	21.17	1.41	0.172	B	B

Queueing Delay results: (08:15-08:30)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	36.77	2.45	0.251	C	B
B	19.06	1.27	0.198	B	B
C	24.03	1.60	0.177	B	B
D	44.63	2.98	0.315	C	B

Queueing Delay results: (08:30-08:45)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	41.33	2.76	0.265	C	B
B	20.50	1.37	0.203	B	B
C	25.84	1.72	0.181	B	B
D	51.78	3.45	0.340	C	C

Queueing Delay results: (08:45-09:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	21.96	1.46	0.156	A	A
B	12.47	0.83	0.141	A	A
C	15.32	1.02	0.123	A	A
D	25.62	1.71	0.183	B	B

Queueing Delay results: (09:00-09:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	13.48	0.90	0.116	A	A
B	8.28	0.55	0.113	A	A
C	10.11	0.67	0.098	A	A
D	15.06	1.00	0.130	A	A

Overview: Standard Roundabout Geometry

Standard Geometry

Arm	V - Approach road half-width (\mathbf{m})	E-Entry width (\mathbf{m})	I' - Effective flare length (\mathbf{m})	R - Entry radius (\mathbf{m})	D - Inscribed circle diameter (\mathbf{m})	PHI - Conflict (entry) angle $(\mathbf{d e g})$	Exit Only	Final Slope	Final Intercept $($ PCU/hr)
A	3.70	4.50	3.40	7.00	19.00	16.50		0.548	1204.008
B	3.45	4.10	2.10	6.00	19.00	15.00		0.516	1073.293
C	4.20	4.45	2.80	6.00	19.00	10.00		0.562	1271.998
D	3.35	4.80	2.60	6.30	19.00	14.00		0.528	1113.227

Overview: Time Segment Results

Time Segment Results

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Time } \\ \text { Segment }\end{array} & \text { Arm } & \begin{array}{c}\text { Demand } \\ \text { (Veh/hr) }\end{array} & \begin{array}{c}\text { Capacity } \\ \text { (Veh/hr) }\end{array} & \text { RFC } & \begin{array}{c}\text { Pedestrian } \\ \text { Demand } \\ \text { (Ped/hr) }\end{array} & \begin{array}{c}\text { Start } \\ \text { Queue } \\ \text { (Veh) }\end{array} & \begin{array}{c}\text { End } \\ \text { Queue } \\ \text { (Veh) }\end{array} & \begin{array}{c}\text { Queueing } \\ \text { Total Delay } \\ \text { (Veh-min) }\end{array} & \begin{array}{c}\text { Geometric } \\ \text { Total Delay } \\ \text { (Veh-min) }\end{array} & \begin{array}{c}\text { Average } \\ \text { Delay Per } \\ \text { Arriving } \\ \text { Vehicle }\end{array} \\ \text { (min) }\end{array}\right]$

A1 - (Default Analysis Set) - D2-2014 Surveyed Flows, PM

Data Errors and Warnings

No errors or warnings
Analysis Set Details

Name	Description	Include In Report	Use Specific Demand Set	Demand Set	Locked	Network Flow Scaling Factor (\%)	Network Capacity Scaling Factor (\%)	Reason For Scaling Factors
(Default Analysis Set)		Yes		(D1)		100.000	100.000	

Demand Set Details

Name	Scenari o Name	Time Perio d Nam e	Descripti on	Locke d	Run Automatica Ily	Use Relationsh ip	Relationsh ip	Start Time (HH:m m)	Finish Time (HH:m m)	Time Perio d Lengt h (min)	Time Segme nt Length (min)	Traffi C Profil e Type
2014 Survey ed Flows, PM	2014 Survey ed Flows	PM			Yes			16:45	18:15	90	15	$\begin{gathered} \mathrm{ONE} \\ \mathrm{HOU} \\ \mathrm{R} \end{gathered}$

Roundabout Network

Roundabout Type(s)

ID	Name	Arm Order	Roundabout Type	Grade Separated	Large Roundabout	Do Geometric Delay
1	(untitled)	A,B,C,D	Standard			

Roundabout Network Options

Driving Side	Lighting	Road Surface	In London
Left	Normal/unknown	$(($ Mini-roundabouts only $))$	

Arms

Arms

ID	Name	Description
A	Wemborough Road (E)	
B	St Andrew's Drive	
C	Wemborough Road (W)	
D	Abercorn Road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)	Assume Flat Start Profile	Initial Queue (PCU)
A	0.00	99999.00		0.00
B	0.00	99999.00		0.00
C	0.00	99999.00		0.00
D	0.00	99999.00		0.00

Standard Geometry

Arm	V - Approach road half-width (m)	E - Entry width (\mathbf{m})	I' - Effective flare length (\mathbf{m})	R - Entry radius (\mathbf{m})	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
A	3.70	4.50	3.40	7.00	19.00	16.50	
B	3.45	4.10	2.10	6.00	19.00	15.00	
C	4.20	4.45	2.80	6.00	19.00	10.00	
D	3.35	4.80	2.60	6.30	19.00	14.00	

Pedestrian Crossings

Arm Crossing Type

A	None
B	None
C	None
D	None

Arm Slopel Intercept and Capacity

Slope and Intercept used in model

Arm	Enter Directly	Slope	Intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
A	((calculated))	((calculated))	0.548	1204.008	
B		((calculated))	((calculated))	0.516	1073.293
C	((calculated))	((calculated))	0.562	1271.998	
D		((calculated))	((calculated))	0.528	1113.227

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entrylexit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		Yes	Yes	HV Percentages	2.00				Yes	Yes

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (\%)	PHF
A	ONE HOUR	Yes	704.00	100.000	N/A
B	ONE HOUR	Yes	371.00	100.000	N/A
C	ONE HOUR	Yes	523.00	100.000	N/A
D	ONE HOUR	Yes	528.00	100.000	N/A

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
$\mathbf{1}$	A	530.01	544.31	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{1}$	B	279.31	284.64	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{1}$	C	393.74	404.97	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{1}$	D	397.51	403.66	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{2}$	A	632.88	649.96	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{2}$	B	333.52	339.89	$\mathrm{~N} / \mathrm{A}$	

2	C	470.17	483.57	N/A	N/A
2	D	474.66	482.01	N/A	N/A
3	A	775.12	796.04	N/A	N/A
3	B	408.48	416.28	N/A	N/A
3	C	575.83	592.25	N/A	N/A
3	D	581.34	590.34	N/A	N/A
4	A	775.12	796.04	N/A	N/A
4	B	408.48	416.28	N/A	N/A
4	C	575.83	592.25	N/A	N/A
4	D	581.34	590.34	N/A	N/A
5	A	632.88	649.96	N/A	N/A
5	B	333.52	339.89	N/A	N/A
5	C	470.17	483.57	N/A	N/A
5	D	474.66	482.01	N/A	N/A
6	A	530.01	544.31	N/A	N/A
6	B	279.31	284.64	N/A	N/A
6	C	393.74	404.97	N/A	N/A
6	D	397.51	403.66	N/A	N/A

Turning Proportions

Turning Counts or Proportions (Veh/hr) - Roundabout 1 (for whole period)

	To					
		A	B	C	D	
	A	0.000	73.000	381.000	250.000	
	B	49.000	0.000	39.000	283.000	
	C	340.000	41.000	0.000	142.000	
	D	148.000	244.000	132.000	4.000	

Turning Proportions (Veh) - Roundabout 1 (for whole period)

	To				
From		A	B	C	D
	A	0.00	0.10	0.54	0.36
	B	0.13	0.00	0.11	0.76
	C	0.65	0.08	0.00	0.27
	D	0.28	0.46	0.25	0.01

Vehicle Mix

Average PCU Per Vehicle - Roundabout 1 (for whole period)

	To					
		A	B	C	D	
	A	1.000	1.000	1.042	1.012	
	B	1.000	1.000	1.051	1.018	
	C	1.038	1.000	1.000	1.014	

	\mathbf{D}	1.014	1.025	1.000	1.000

Heavy Vehicle Percentages - Roundabout 1 (for whole period)

	To				
		A	B	C	D
	A	0.000	0.000	4.200	1.200
	B	0.000	0.000	5.100	1.800
	C	3.800	0.000	0.000	1.400
	D	1.400	2.500	0.000	0.000

Results

Results Summary

Arm	Max RFC	Max Delay (min)	Max Queue (Veh)	Max LOS	Total Demand (Veh/hr)	Total Arrivals (Veh)	Total Queueing Delay (Veh-min)	Average Queueing Delay (min)	Rate Of Queueing Delay (Veh- min/min)	Inclusive Queueing Total Delay (Veh-min)	Inclusive Queueing Average Delay (min)	Slope	Intercept (PCU/hr)
A	0.84	0.40	4.90	C	646.00	969.01	222.87	0.23	2.48	222.91	0.23	0.548	1204.008
B	0.66	0.29	1.91	C	340.44	510.65	99.11	0.19	1.10	99.12	0.19	0.516	1073.293
C	0.65	0.20	1.86	B	479.92	719.87	102.70	0.14	1.14	102.71	0.14	0.562	1271.998
D	0.69	0.23	2.17	B	484.50	726.75	118.82	0.16	1.32	118.84	0.16	0.528	1113.227

Main Results

Main results: (16:45-17:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	530.01	132.50	525.60	401.45	314.60	0.00	1001.91	846.80	0.529	0.00	1.10
B	279.31	69.83	277.00	267.48	572.71	0.00	756.13	559.82	0.369	0.00	0.58
C	393.74	98.44	391.15	412.20	437.51	0.00	994.24	789.17	0.396	0.00	0.65
D	397.51	99.38	394.53	507.13	321.53	0.00	924.19	749.04	0.430	0.00	0.74

Main results: (17:00-17:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	632.88	158.22	629.98	481.32	377.29	0.00	967.95	846.80	0.654	1.10	1.83
B	333.52	83.38	332.24	320.74	686.53	0.00	697.10	559.82	0.478	0.58	0.90
C	470.17	117.54	468.87	494.16	524.61	0.00	945.96	789.17	0.497	0.65	0.97
D	474.66	118.66	473.16	608.03	385.45	0.00	889.99	749.04	0.533	0.74	1.12

Main results: (17:15-17:30)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	775.12	193.78	764.12	587.47	460.41	0.00	922.91	846.79	0.840	1.83	4.58
B	408.48	102.12	404.76	390.93	833.60	0.00	620.83	559.82	0.658	0.90	1.83

\mathbf{C}	575.84	143.96	572.49	600.43	637.93	0.00	883.15	789.17	0.652	0.97	1.81
\mathbf{D}	581.34	145.33	577.37	739.91	470.51	0.00	844.47	749.04	0.688	1.12	2.11

Main results: (17:30-17:45)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	775.12	193.78	773.84	591.02	463.36	0.00	921.31	846.79	0.841	4.58	4.90
B	408.48	102.12	408.17	393.92	843.28	0.00	615.80	559.82	0.663	1.83	1.91
C	575.84	143.96	575.65	606.99	644.46	0.00	879.53	789.17	0.655	1.81	1.86
D	581.34	145.33	581.12	746.85	473.26	0.00	843.00	749.04	0.690	2.11	2.17

Main results: (17:45-18:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	632.88	158.22	644.62	486.56	381.60	0.00	965.61	846.80	0.655	4.90	1.97
B	333.52	83.38	337.33	325.15	701.06	0.00	689.55	559.82	0.484	1.91	0.96
C	470.17	117.54	473.53	503.98	534.40	0.00	940.54	789.17	0.500	1.86	1.02
D	474.66	118.66	478.64	618.42	389.51	0.00	887.82	749.04	0.535	2.17	1.17

Main results: (18:00-18:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	530.01	132.50	533.28	405.83	318.23	0.00	999.95	846.80	0.530	1.97	1.15
B	279.31	69.83	280.74	270.72	580.79	0.00	751.94	559.82	0.371	0.96	0.60
C	393.74	98.44	395.14	417.90	443.63	0.00	990.85	789.17	0.397	1.02	0.67
D	397.51	99.38	399.12	513.83	324.93	0.00	922.37	749.04	0.431	1.17	0.77

Queueing Delay Results

Queueing Delay results: (16:45-17:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	15.70	1.05	0.125	A	A
B	8.30	0.55	0.125	A	A
C	9.37	0.62	0.099	A	A
D	10.70	0.71	0.113	A	A

Queueing Delay results: (17:00-17:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	25.87	1.72	0.176	B	B
B	12.92	0.86	0.164	A	A
C	14.07	0.94	0.125	A	A
D	16.13	1.08	0.143	A	A

Queueing Delay results: (17:15-17:30)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service

A	59.18	3.95	0.355	C	C
B	25.21	1.68	0.273	C	B
C	25.41	1.69	0.191	B	B
D	29.36	1.96	0.221	B	B

Queueing Delay results: (17:30-17:45)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	71.57	4.77	0.399	C	C
B	28.18	1.88	0.288	C	B
C	27.59	1.84	0.197	B	B
D	32.19	2.15	0.229	B	B

Queueing Delay results: (17:45-18:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	32.53	2.17	0.193	B	B
B	15.17	1.01	0.172	B	B
C	15.95	1.06	0.129	A	A
D	18.51	1.23	0.148	A	A

Queueing Delay results: (18:00-18:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	18.02	1.20	0.129	A	A
B	9.32	0.62	0.128	A	A
C	10.31	0.69	0.101	A	A
D	11.92	0.79	0.115	A	A

Overview: Standard Roundabout Geometry

Standard Geometry

Arm	V - Approach road half-width (\mathbf{m})	E - Entry width (\mathbf{m})	I' - Effective flare length (\mathbf{m})	R - Entry radius (\mathbf{m})	D-Inscribed circle diameter (\mathbf{m})	PHI - Conflict (entry) angle $(\mathbf{d e g})$	Exit Only	Final Slope	Final Intercept $($ PCU/hr)
A	3.70	4.50	3.40	7.00	19.00	16.50		0.548	1204.008
B	3.45	4.10	2.10	6.00	19.00	15.00		0.516	1073.293
C	4.20	4.45	2.80	6.00	19.00	10.00		0.562	1271.998
D	3.35	4.80	2.60	6.30	19.00	14.00		0.528	1113.227

Overview: Time Segment Results

Time Segment Results

Time Segment	Arm	Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Pedestrian Demand (Ped/hr)	Start Queue (Veh)	End Queue (Veh)	Queueing Total Delay (Veh-min)	Geometric Total Delay (Veh-min)	Average Delay Per Arriving Vehicle (min)
$\mathbf{1}$	A	530.01	1001.91	0.529	0.00	0.00	1.10	15.70	(0.02)	0.125

1	B	279.31	756.13	0.369	0.00	0.00	0.58	8.30	(0.02)	0.125
1	C	393.74	994.24	0.396	0.00	0.00	0.65	9.37	(0.02)	0.099
1	D	397.51	924.19	0.430	0.00	0.00	0.74	10.70	(0.02)	0.113
2	A	632.88	967.95	0.654	0.00	1.10	1.83	25.87	(0.02)	0.176
2	B	333.52	697.10	0.478	0.00	0.58	0.90	12.92	(0.02)	0.164
2	C	470.17	945.96	0.497	0.00	0.65	0.97	14.07	(0.02)	0.125
2	D	474.66	889.99	0.533	0.00	0.74	1.12	16.13	(0.02)	0.143
3	A	775.12	922.91	0.840	0.00	1.83	4.58	59.18	(0.02)	0.355
3	B	408.48	620.83	0.658	0.00	0.90	1.83	25.21	(0.02)	0.273
3	C	575.84	883.15	0.652	0.00	0.97	1.81	25.41	(0.02)	0.191
3	D	581.34	844.47	0.688	0.00	1.12	2.11	29.36	(0.02)	0.221
4	A	775.12	921.31	0.841	0.00	4.58	4.90	71.57	(0.02)	0.399
4	B	408.48	615.80	0.663	0.00	1.83	1.91	28.18	(0.02)	0.288
4	C	575.84	879.53	0.655	0.00	1.81	1.86	27.59	(0.02)	0.197
4	D	581.34	843.00	0.690	0.00	2.11	2.17	32.19	(0.02)	0.229
5	A	632.88	965.61	0.655	0.00	4.90	1.97	32.53	(0.02)	0.193
5	B	333.52	689.55	0.484	0.00	1.91	0.96	15.17	(0.02)	0.172
5	C	470.17	940.54	0.500	0.00	1.86	1.02	15.95	(0.02)	0.129
5	D	474.66	887.82	0.535	0.00	2.17	1.17	18.51	(0.02)	0.148
6	A	530.01	999.95	0.530	0.00	1.97	1.15	18.02	(0.02)	0.129
6	B	279.31	751.94	0.371	0.00	0.96	0.60	9.32	(0.02)	0.128
6	C	393.74	990.85	0.397	0.00	1.02	0.67	10.31	(0.02)	0.101
6	D	397.51	922.37	0.431	0.00	1.17	0.77	11.92	(0.02)	0.115

A1 - (Default Analysis Set) - D3-2020 Base Flows, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Include In Report	Use Specific Demand Set	Demand Set	Locked	Network Flow Scaling Factor (\%)	Network Capacity Scaling Factor (\%)	Reason For Scaling Factors
(Default Analysis Set)		Yes		(D1)		100.000	100.000	

Demand Set Details

$\begin{gathered} \mathrm{Nam} \\ \mathrm{e} \end{gathered}$	Scenari o Name	Time Perio d Name	$\begin{gathered} \text { Descripti } \\ \text { on } \end{gathered}$	$\begin{gathered} \text { Locke } \\ \text { d } \end{gathered}$	Run Automatical ly	Use Relationsh ip	Relationsh ip	Start Time (HH:m m)	Finish Time (HH:m m)	$\begin{gathered} \text { Time } \\ \text { Perio } \\ d \\ \text { Lengt } \\ h \\ (\mathrm{~min}) \end{gathered}$	Time Segme nt Length (min)	Traffi C Profil e Type
2020 Base Flow s, AM	2020 Base Flows	AM			Yes			07:45	09:15	90	15	$\begin{gathered} \text { ONE } \\ \text { HOU } \\ \text { R } \end{gathered}$

Roundabout Network

Roundabout Type(s)

ID	Name	Arm Order	Roundabout Type	Grade Separated	Large Roundabout	Do Geometric Delay
1	(untitled)	A,B,C,D	Standard			

Roundabout Network Options

Driving Side	Lighting	Road Surface	In London
Left	Normal/unknown	$(($ Mini-roundabouts only $))$	

Arms

Arms

ID	Name	Description
A	Wemborough Road (E)	
B	St Andrew's Drive	
C	Wemborough Road (W)	
D	Abercorn Road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)	Assume Flat Start Profile	Initial Queue (PCU)
A	0.00	99999.00		0.00
B	0.00	99999.00		0.00
C	0.00	99999.00		0.00
D	0.00	99999.00		0.00

Standard Geometry

Arm	V - Approach road half-width (m)	E-Entry width (\mathbf{m})	I' - Effective flare length (\mathbf{m})	R - Entry radius (\mathbf{m})	D - Inscribed circle diameter (\mathbf{m})	PHI - Conflict (entry) angle (deg)	Exit Only
A	3.70	4.50	3.40	7.00	19.00	16.50	
B	3.45	4.10	2.10	6.00	19.00	15.00	
C	4.20	4.45	2.80	6.00	19.00	10.00	
D	3.35	4.80	2.60	6.30	19.00	14.00	

Pedestrian Crossings

Arm	Crossing Type
A	None
B	None
C	None
D	None

Arm Slope/ Intercept and Capacity

Slope and Intercept used in model

Arm	Enter Directly	Slope	Intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
A		$(($ calculated $))$	$(($ calculated $))$	0.548	1204.008

B	$(($ calculated $)$	$(($ calculated $))$	0.516	1073.293
C	$(($ calculated $))$	$(($ calculated $))$	0.562	1271.998
D	$(($ calculated $))$	((calculated))	0.528	1113.227

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

| Default | Vehicle
 Mix | Vehicle
 Mix | Vehicle
 Mix
 Vehicle
 Mix | Varies
 Over
 Time | Varies
 Over
 Turn | Paries
 Ever | Vehicle Mix
 Source | Factor
 for a
 HV
 (PCU) | Default
 Turning
 Proportions | Estimate
 from
 entrylexit
 counts |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Turning |
| :---: |
| Proportions |
| Vary Over |
| Time | | Turning
 Proportions
 Vary Over
 Turn |
| :---: |

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (\%)	PHF
A	ONE HOUR	Yes	631.00	100.000	N/A
B	ONE HOUR	Yes	400.00	100.000	N/A
C	ONE HOUR	Yes	565.00	100.000	N/A
D	ONE HOUR	Yes	624.00	100.000	N/A

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
$\mathbf{1}$	A	475.05	488.73	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{1}$	B	301.14	305.85	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{1}$	C	425.36	436.59	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{1}$	D	469.78	476.07	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{2}$	A	567.26	583.60	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{2}$	B	359.59	365.21	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{2}$	C	507.92	521.33	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{2}$	D	560.96	714.76	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{3}$	A	694.74	447.29	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{3}$	B	440.41	638.50	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{3}$	C	622.08	696.24	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{3}$	D	687.04	714.76	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{4}$	A	694.74	447.29	$\mathrm{~N} / \mathrm{A}$	
$\mathbf{4}$	B	440.41	638.50	$\mathrm{~N} / \mathrm{A}$	
$\mathbf{4}$	C	622.08	696.24	N	
$\mathbf{4}$	D	687.04			

$\mathbf{5}$	A	567.26	583.60	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{5}$	B	359.59	365.21	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{5}$	C	507.92	521.33	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{5}$	D	560.96	568.48	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{6}$	A	475.05	488.73	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{6}$	B	301.14	305.85	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{6}$	C	425.36	436.59	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{6}$	\mathbf{D}	469.78	476.07	$\mathrm{~N} / \mathrm{A}$	

Turning Proportions

Turning Counts or Proportions (Veh/hr) - Roundabout 1 (for whole period)

	To					
From		A	B	C	D	
	A	1.000	66.000	368.000	196.000	
	B	64.000	1.000	40.000	295.000	
	C	365.000	73.000	1.000	126.000	
	D	176.000	371.000	70.000	7.000	

Turning Proportions (Veh) - Roundabout 1 (for whole period)

	To				
		A	B	C	D
	A	0.00	0.10	0.58	0.31
	B	0.16	0.00	0.10	0.74
	C	0.65	0.13	0.00	0.22
	D	0.28	0.59	0.11	0.01

Vehicle Mix

Average PCU Per Vehicle - Roundabout 1 (for whole period)

	To				
		A	B	C	D
	A	1.000	1.016	1.038	1.016
	C	1.000	1.000	1.053	1.014
	D	1.012	1.014	1.015	1.000

Heavy Vehicle Percentages - Roundabout 1 (for whole period)

	To					
		A	B	C	D	
	A	0.000	1.600	3.800	1.600	
	B	0.000	0.000	5.300	1.400	
	C	3.500	0.000	0.000	1.700	
	D	1.200	1.400	1.500	0.000	

Results

Results Summary

Arm	$\begin{aligned} & \text { Max } \\ & \text { RFC } \end{aligned}$	Max Delay (min)		$\begin{aligned} & \operatorname{Max} \\ & \text { LOS } \end{aligned}$	Total Demand (Veh/hr)	Total Arrivals (Veh)	Total Queueing Delay (Veh-min)	Average Queueing Delay (min)	Rate Of Queueing Delay (Vehmin/min)	Inclusive Queueing Total Delay (Veh-min)	Inclusive Queueing Average Delay (min)	Slope	Intercept (PCU/hr)
A	0.81	0.36	3.94	C	579.01	868.52	185.92	0.21	2.07	185.95	0.21	0.548	1204.008
B	0.64	0.24	1.74	B	367.05	550.57	94.78	0.17	1.05	94.79	0.17	0.516	1073.293
C	0.70	0.22	2.22	B	518.45	777.68	119.21	0.15	1.32	119.23	0.15	0.562	1271.998
D	0.86	0.50	5.38	D	572.59	858.89	232.49	0.27	2.58	232.53	0.27	0.528	1113.227

Main Results

Main results: (07:45-08:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	475.05	118.76	471.19	452.76	390.26	0.00	959.75	835.37	0.495	0.00	0.96
B	301.14	75.28	298.78	381.36	480.09	0.00	806.06	618.92	0.374	0.00	0.59
C	425.36	106.34	422.46	357.64	421.24	0.00	1005.53	781.02	0.423	0.00	0.72
D	469.78	117.45	465.47	466.15	377.55	0.00	896.99	720.35	0.524	0.00	1.08

Main results: (08:00-08:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	567.25	141.81	564.82	542.75	467.81	0.00	917.91	835.37	0.618	0.96	1.57
B	359.59	89.90	358.39	457.14	575.49	0.00	756.25	618.92	0.475	0.59	0.89
C	507.92	126.98	506.40	428.73	505.15	0.00	958.97	781.02	0.530	0.72	1.11
D	560.96	140.24	557.97	558.94	452.60	0.00	856.93	720.35	0.655	1.08	1.83

Main results: (08:15-08:30)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	694.74	173.69	686.26	660.48	566.37	0.00	864.74	835.37	0.803	1.57	3.69
B	440.41	110.10	437.24	553.81	698.82	0.00	691.84	618.92	0.637	0.89	1.68
C	622.08	155.52	617.86	520.73	615.34	0.00	897.82	781.02	0.693	1.11	2.16
D	687.04	171.76	674.64	680.99	552.21	0.00	803.76	720.35	0.855	1.83	4.93

Main results: (08:30-08:45)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	694.74	173.69	693.76	666.52	574.51	0.00	860.35	835.37	0.808	3.69	3.94
B	440.41	110.10	440.19	561.42	706.86	0.00	687.65	618.92	0.640	1.68	1.74
C	622.08	155.52	621.83	526.59	620.45	0.00	894.98	781.02	0.695	2.16	2.22
D	687.04	171.76	685.24	686.49	555.78	0.00	801.86	720.35	0.857	4.93	5.38

Main results: (08:45-09:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	567.25	141.81	576.21	551.88	480.46	0.00	911.08	835.37	0.623	3.94	1.70
B	359.59	89.90	362.78	468.93	587.75	0.00	749.85	618.92	0.480	1.74	0.94
C	507.92	126.98	512.18	437.68	512.85	0.00	954.69	781.02	0.532	2.22	1.16
D	560.96	140.24	574.52	567.20	457.82	0.00	854.15	720.35	0.657	5.38	1.99

Main results: (09:00-09:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	475.05	118.76	477.83	458.48	396.44	0.00	956.42	835.37	0.497	1.70	1.00
B	301.14	75.28	302.46	387.26	487.00	0.00	802.45	618.92	0.375	0.94	0.61
C	425.36	106.34	427.01	362.76	426.71	0.00	1002.49	781.02	0.424	1.16	0.75
D	469.78	117.45	473.22	472.03	381.69	0.00	894.78	720.35	0.525	1.99	1.13

Queueing Delay Results

Queueing Delay results: (07:45-08:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	13.77	0.92	0.122	A	A
B	8.47	0.56	0.118	A	A
C	10.44	0.70	0.102	A	A
D	15.30	1.02	0.138	A	A

Queueing Delay results: (08:00-08:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	22.36	1.49	0.169	B	B
B	12.83	0.86	0.150	A	A
C	15.95	1.06	0.132	A	A
D	25.72	1.71	0.199	B	B

Queueing Delay results: (08:15-08:30)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	48.77	3.25	0.322	C	B
B	23.47	1.56	0.233	B	B
C	30.02	2.00	0.211	B	B
D	62.23	4.15	0.429	D	C

Queueing Delay results: (08:30-08:45)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	57.65	3.84	0.355	C	C
B	25.75	1.72	0.242	B	B
C	32.98	2.20	0.219	B	B
D	77.89	5.19	0.498	D	C

Queueing Delay results: (08:45-09:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	27.66	1.84	0.184	B	B
B	14.81	0.99	0.156	A	A
C	18.26	1.22	0.137	A	A
D	33.60	2.24	0.224	B	B

Queueing Delay results: (09:00-09:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	15.70	1.05	0.126	A	A
B	9.44	0.63	0.120	A	A
C	11.56	0.77	0.105	A	A
D	17.75	1.18	0.143	A	A

Overview: Standard Roundabout Geometry

Standard Geometry

Arm	V - Approach road half-width (\mathbf{m})	E-Entry width (\mathbf{m})	I' - Effective flare length (\mathbf{m})	R - Entry radius (\mathbf{m})	D - Inscribed circle diameter (\mathbf{m})	PHI - Conflict (entry) angle $(\mathbf{d e g})$	Exit Only	Final Slope	Final Intercept (PCU/hr)
A	3.70	4.50	3.40	7.00	19.00	16.50		0.548	1204.008
B	3.45	4.10	2.10	6.00	19.00	15.00		0.516	1073.293
C	4.20	4.45	2.80	6.00	19.00	10.00		0.562	1271.998
D	3.35	4.80	2.60	6.30	19.00	14.00		0.528	1113.227

Overview: Time Segment Results

Time Segment Results

Time Segment	Arm	Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Pedestrian Demand (Ped/hr)	Start Queue (Veh)	End Queue (Veh)	Queueing Total Delay (Veh-min)	Geometric Total Delay (Veh-min)	Average Delay Per Arriving Vehicle (min)
$\mathbf{1}$	A	475.05	959.75	0.495	0.00	0.00	0.96	13.77	(0.02)	0.122
$\mathbf{1}$	B	301.14	806.06	0.374	0.00	0.00	0.59	8.47	(0.02)	0.118
$\mathbf{1}$	\mathbf{C}	425.36	1005.53	0.423	0.00	0.00	0.72	10.44	(0.02)	0.102
$\mathbf{1}$	\mathbf{D}	469.78	896.99	0.524	0.00	0.00	1.08	15.30	(0.02)	0.138
$\mathbf{2}$	A	567.25	917.91	0.618	0.00	0.96	1.57	22.36	(0.02)	0.169
$\mathbf{2}$	B	359.59	756.25	0.475	0.00	0.59	0.89	12.83	(0.02)	0.150
$\mathbf{2}$	\mathbf{C}	507.92	958.97	0.530	0.00	0.72	1.11	15.95	(0.02)	0.132
$\mathbf{2}$	D	560.96	856.93	0.655	0.00	1.08	1.83	25.72	(0.02)	0.199
$\mathbf{3}$	A	694.74	864.74	0.803	0.00	1.57	3.69	48.77	(0.02)	0.322
$\mathbf{3}$	B	440.41	691.84	0.637	0.00	0.89	1.68	23.47	(0.02)	0.233
$\mathbf{3}$	C	622.08	897.82	0.693	0.00	1.11	2.16	30.02	(0.02)	0.211
$\mathbf{3}$	D	687.04	803.76	0.855	0.00	1.83	4.93	62.23	(0.02)	0.429
$\mathbf{4}$	A	694.74	860.35	0.808	0.00	3.69	3.94	57.65	(0.02)	0.355

$\mathbf{4}$	\mathbf{B}	440.41	687.65	0.640	0.00	1.68	1.74	25.75	(0.02)	0.242
$\mathbf{4}$	C	622.08	894.98	0.695	0.00	2.16	2.22	32.98	(0.02)	0.219
$\mathbf{4}$	D	687.04	801.86	0.857	0.00	4.93	5.38	77.89	(0.02)	0.498
$\mathbf{5}$	A	567.25	911.08	0.623	0.00	3.94	1.70	27.66	(0.02)	0.184
$\mathbf{5}$	B	359.59	749.85	0.480	0.00	1.74	0.94	14.81	(0.02)	0.156
$\mathbf{5}$	C	507.92	954.69	0.532	0.00	2.22	1.16	18.26	(0.02)	0.137
$\mathbf{5}$	D	560.96	854.15	0.657	0.00	5.38	1.99	33.60	(0.02)	0.224
$\mathbf{6}$	A	475.05	956.42	0.497	0.00	1.70	1.00	15.70	(0.02)	0.126
$\mathbf{6}$	B	301.14	802.45	0.375	0.00	0.94	0.61	9.44	(0.02)	0.120
$\mathbf{6}$	C	425.36	1002.49	0.424	0.00	1.16	0.75	11.56	(0.02)	0.105
$\mathbf{6}$	D	469.78	894.78	0.525	0.00	1.99	1.13	17.75	(0.02)	0.143

A1 - (Default Analysis Set) - D4 - 2020 Base Flows, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Include In Report	Use Specific Demand Set	Demand Set	Locked	Network Flow Scaling Factor (\%)	Network Capacity Scaling Factor (\%)	Reason For Scaling Factors
(Default Analysis Set)		Yes		(D1)		100.000	100.000	

Demand Set Details

$\begin{gathered} \text { Nam } \\ \text { e } \end{gathered}$	Scenari o Name	Time Perio d Name	Descripti on	Locke d	Run Automatical ly	Use Relationsh ip	Relationsh ip	Start Time (HH:m m)	Finish Time (HH:m m)	Time Perio d Lengt h (min)	Time Segme nt Length (min)	$\begin{array}{\|c} \text { Traffi } \\ \text { c } \\ \text { Profil } \\ \text { e } \\ \text { Type } \end{array}$
2020 Base Flow s, PM	2020 Base Flows	PM			Yes			16:45	18:15	90	15	$\begin{gathered} \text { ONE } \\ \mathrm{HOU} \\ \mathrm{R} \end{gathered}$

Roundabout Network

Roundabout Type(s)

ID	Name	Arm Order	Roundabout Type	Grade Separated	Large Roundabout	Do Geometric Delay
1	(untitled)	A,B,C,D	Standard			

Roundabout Network Options

Driving Side	Lighting	Road Surface	In London
Left	Normal/unknown	$(($ Mini-roundabouts only $))$	

Arms

Arms

ID	Name	Description
A	Wemborough Road (E)	
B	St Andrew's Drive	
C	Wemborough Road (W)	
D	Abercorn Road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)	Assume Flat Start Profile	Initial Queue (PCU)
A	0.00	99999.00		0.00
B	0.00	99999.00		0.00
C	0.00	99999.00		0.00
D	0.00	99999.00		0.00

Standard Geometry

Arm	V - Approach road half-width (m)	E - Entry width (m)	I' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
A	3.70	4.50	3.40	7.00	19.00	16.50	
B	3.45	4.10	2.10	6.00	19.00	15.00	
C	4.20	4.45	2.80	6.00	19.00	10.00	
D	3.35	4.80	2.60	6.30	19.00	14.00	

Pedestrian Crossings

Arm	Crossing Type
A	None
B	None
C	None
D	None

Arm Slope/ Intercept and Capacity

Slope and Intercept used in model

Arm	Enter Directly	Slope	Intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
A		$(($ calculated) $)$	$(($ calculated))	0.548	1204.008
B		((calculated))	((calculated))	0.516	1073.293
C	((calculated))	((calculated))	0.562	1271.998	
D	((calculated))	((calculated))	0.528	1113.227	

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle	Vehicle Mix	Vehicle Mix	Vehicle Mix Varies	Vehicle Mix Source	PCU Factor for a	Default Turning Proportions	Estimate from entrylexit	Turning Proportions Vary Over	Turning Proportions Vary Over	Turning Proportions Vary Over

	Over Time	Over Turn	Over Entry	HV (PCU)	counts	Time	Turn	Entry		
		Yes	Yes	HV Percentages	2.00				Yes	Yes

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (\%)	PHF
A	ONE HOUR	Yes	751.00	100.000	N/A
B	ONE HOUR	Yes	394.00	100.000	N/A
C	ONE HOUR	Yes	557.00	100.000	N/A
D	ONE HOUR	Yes	561.00	100.000	N/A

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
1	A	565.39	580.60	N/A	N/A
1	B	296.62	302.28	N/A	N/A
1	C	419.34	431.29	N/A	N/A
1	D	422.35	428.90	N/A	N/A
2	A	675.13	693.29	N/A	N/A
2	B	354.20	360.95	N/A	N/A
2	C	500.73	515.00	N/A	N/A
2	D	504.33	512.15	N/A	N/A
3	A	826.87	849.11	N/A	N/A
3	B	433.80	442.07	N/A	N/A
3	C	613.27	630.74	N/A	N/A
3	D	617.67	627.25	N/A	N/A
4	A	826.87	849.11	N/A	N/A
4	B	433.80	442.07	N/A	N/A
4	C	613.27	630.74	N/A	N/A
4	D	617.67	627.25	N/A	N/A
5	A	675.13	693.29	N/A	N/A
5	B	354.20	360.95	N/A	N/A
5	C	500.73	515.00	N/A	N/A
5	D	504.33	512.15	N/A	N/A
6	A	565.39	580.60	N/A	N/A
6	B	296.62	302.28	N/A	N/A
6	C	419.34	431.29	N/A	N/A
6	D	422.35	428.90	N/A	N/A

Turning Proportions

Turning Counts or Proportions (Veh/hr) - Roundabout 1 (for whole period)

	To					
		A	B	C	D	
	A	2.000	78.000	405.000	266.000	
	B	52.000	0.000	41.000	301.000	
	C	362.000	44.000	0.000	151.000	
	D	157.000	260.000	140.000	4.000	

Turning Proportions (Veh) - Roundabout 1 (for whole period)

	To				
		A	B	C	D
	A	0.00	0.10	0.54	0.35
	B	0.13	0.00	0.10	0.76
	C	0.65	0.08	0.00	0.27
	D	0.28	0.46	0.25	0.01

Vehicle Mix

Average PCU Per Vehicle - Roundabout 1 (for whole period)

	To					
		A	B	C	D	
	A	1.000	1.000	1.042	1.012	
	B	1.000	1.000	1.051	1.018	
	C	1.038	1.000	1.000	1.014	
	D	1.014	1.025	1.000	1.000	

Heavy Vehicle Percentages - Roundabout 1 (for whole period)

	To				
		A	B	C	D
	A	0.000	0.000	4.200	1.200
	C	3.800	0.000	0.000	5.100
		1.800			
	D	1.400	2.500	0.000	0.000

Results

Results Summary

Arm	$\begin{aligned} & \text { Max } \\ & \text { RFC } \end{aligned}$	Max Delay (min)		$\begin{aligned} & \text { Max } \\ & \text { LOS } \end{aligned}$	Total Demand (Veh/hr)	Total Arrivals (Veh)	Total Queueing Delay (Veh-min)	Average Queueing Delay (min)	Rate Of Queueing Delay (Vehmin/min)	Inclusive Queueing Total Delay (Veh-min)	Inclusive Queueing Average Delay (min)	Slope	Intercept (PCU/hr)
A	0.91	0.66	8.47	E	689.13	1033.70	326.28	0.32	3.63	326.33	0.32	0.548	1204.008
B	0.74	0.38	2.65	C	361.54	542.31	126.55	0.23	1.41	126.57	0.23	0.516	1073.293
C	0.72	0.25	2.44	B	511.11	766.67	126.88	0.17	1.41	126.90	0.17	0.562	1271.998
D	0.75	0.29	2.86	C	514.79	772.18	146.94	0.19	1.63	146.97	0.19	0.528	1113.227

Main Results

Main results: (16:45-17:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	565.39	141.35	560.19	428.14	334.60	0.00	991.16	846.83	0.570	0.00	1.30
B	296.62	74.16	293.97	285.24	609.55	0.00	737.07	560.38	0.402	0.00	0.66
C	419.34	104.83	416.38	437.24	466.27	0.00	978.32	787.94	0.429	0.00	0.74
D	422.35	105.59	418.96	538.86	343.79	0.00	912.29	748.16	0.463	0.00	0.85

Main results: (17:00-17:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	675.13	168.78	671.11	513.28	401.24	0.00	955.05	846.82	0.707	1.30	2.31
B	354.20	88.55	352.54	341.98	730.37	0.00	674.40	560.38	0.525	0.66	1.08
C	500.73	125.18	499.09	523.98	558.92	0.00	926.97	787.94	0.540	0.74	1.15
D	504.33	126.08	502.42	645.91	412.10	0.00	875.74	748.16	0.576	0.85	1.33

Main results: (17:15-17:30)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	826.87	206.72	806.72	625.41	488.77	0.00	907.62	846.82	0.911	2.31	7.34
B	433.80	108.45	428.28	415.47	880.02	0.00	596.81	560.38	0.727	1.08	2.46
C	613.27	153.32	608.51	632.34	675.96	0.00	862.09	787.94	0.711	1.15	2.34
D	617.68	154.42	611.96	782.26	502.22	0.00	827.52	748.16	0.746	1.33	2.75

Main results: (17:30-17:45)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	826.87	206.72	822.37	630.40	492.92	0.00	905.37	846.82	0.913	7.34	8.47
B	433.80	108.45	433.05	419.89	895.39	0.00	588.82	560.38	0.737	2.46	2.65
C	613.27	153.32	612.88	642.59	685.86	0.00	856.61	787.94	0.716	2.34	2.44
D	617.68	154.42	617.24	792.66	506.07	0.00	825.46	748.16	0.748	2.75	2.86

Main results: (17:45-18:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	675.13	168.78	698.76	520.74	407.33	0.00	951.75	846.82	0.709	8.47	2.56
B	354.20	88.55	360.03	348.95	757.13	0.00	660.48	560.38	0.536	2.65	1.19
C	500.73	125.18	505.59	541.60	575.56	0.00	917.75	787.94	0.546	2.44	1.23
D	504.33	126.08	510.16	663.25	417.91	0.00	872.64	748.16	0.578	2.86	1.40

Main results: (18:00-18:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow $(\mathrm{Veh} / \mathrm{hr})$	Exit Flow (Veh/hr)	Circulating Flow $(\mathrm{Veh} / \mathrm{hr})$	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	565.39	141.35	570.18	433.44	338.93	0.00	988.81	846.83	0.572	2.56	1.36

B	296.62	74.16	298.61	289.21	619.92	0.00	731.68	560.38	0.405	1.19	0.69
C	419.34	104.83	421.18	444.49	474.04	0.00	974.02	787.94	0.431	1.23	0.77
D	422.35	105.59	424.45	547.29	347.93	0.00	910.08	748.16	0.464	1.40	0.88

Queueing Delay Results

Queueing Delay results: (16:45-17:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	18.36	1.22	0.138	A	A
B	9.49	0.63	0.135	A	A
C	10.66	0.71	0.106	A	A
D	12.15	0.81	0.121	A	A

Queueing Delay results: (17:00-17:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	32.15	2.14	0.208	B	B
B	15.39	1.03	0.185	B	B
C	16.57	1.10	0.140	A	A
D	18.96	1.26	0.160	A	A

Queueing Delay results: (17:15-17:30)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	87.70	5.85	0.515	D	C
B	32.99	2.20	0.345	C	C
C	32.29	2.15	0.232	B	B
D	37.41	2.49	0.271	C	B

Queueing Delay results: (17:30-17:45)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	119.87	7.99	0.658	E	D
B	38.67	2.58	0.382	C	C
C	36.06	2.40	0.245	B	B
D	42.29	2.82	0.287	C	B

Queueing Delay results: (17:45-18:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	46.61	3.11	0.257	C	B
B	19.19	1.28	0.203	B	B
C	19.41	1.29	0.147	A	A
D	22.41	1.49	0.168	B	B

Queueing Delay results: (18:00-18:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	21.59	1.44	0.145	A	A

\mathbf{B}	10.83	0.72	0.139	A	A
\mathbf{C}	11.89	0.79	0.109	A	A
D	13.71	0.91	0.124	A	A

Overview: Standard Roundabout Geometry

Standard Geometry

Arm	V - Approach road half-width (\mathbf{m})	E - Entry width (\mathbf{m})	I' - Effective flare length (\mathbf{m})	R - Entry radius (\mathbf{m})	D - Inscribed circle diameter (\mathbf{m})	PHI - Conflict (entry) angle $(\mathbf{d e g})$	Exit Only	Final Slope	Final Intercept $($ PCU/hr)
A	3.70	4.50	3.40	7.00	19.00	16.50		0.548	1204.008
B	3.45	4.10	2.10	6.00	19.00	15.00		0.516	1073.293
C	4.20	4.45	2.80	6.00	19.00	10.00		0.562	1271.998
D	3.35	4.80	2.60	6.30	19.00	14.00		0.528	1113.227

Overview: Time Segment Results

Time Segment Results

Time Segment	Arm	Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Pedestrian Demand (Ped/hr)	Start Queue (Veh)	End Queue (Veh)	Queueing Total Delay (Veh-min)	Geometric Total Delay (Veh-min)	Average Delay Per Arriving Vehicle (min)
1	A	565.39	991.16	0.570	0.00	0.00	1.30	18.36	(0.02)	0.138
1	B	296.62	737.07	0.402	0.00	0.00	0.66	9.49	(0.02)	0.135
1	C	419.34	978.32	0.429	0.00	0.00	0.74	10.66	(0.02)	0.106
1	D	422.35	912.29	0.463	0.00	0.00	0.85	12.15	(0.02)	0.121
2	A	675.13	955.05	0.707	0.00	1.30	2.31	32.15	(0.02)	0.208
2	B	354.20	674.40	0.525	0.00	0.66	1.08	15.39	(0.02)	0.185
2	C	500.73	926.97	0.540	0.00	0.74	1.15	16.57	(0.02)	0.140
2	D	504.33	875.74	0.576	0.00	0.85	1.33	18.96	(0.02)	0.160
3	A	826.87	907.62	0.911	0.00	2.31	7.34	87.70	(0.02)	0.515
3	B	433.80	596.81	0.727	0.00	1.08	2.46	32.99	(0.02)	0.345
3	C	613.27	862.09	0.711	0.00	1.15	2.34	32.29	(0.02)	0.232
3	D	617.68	827.52	0.746	0.00	1.33	2.75	37.41	(0.02)	0.271
4	A	826.87	905.37	0.913	0.00	7.34	8.47	119.87	(0.02)	0.658
4	B	433.80	588.82	0.737	0.00	2.46	2.65	38.67	(0.02)	0.382
4	C	613.27	856.61	0.716	0.00	2.34	2.44	36.06	(0.02)	0.245
4	D	617.68	825.46	0.748	0.00	2.75	2.86	42.29	(0.02)	0.287
5	A	675.13	951.75	0.709	0.00	8.47	2.56	46.61	(0.02)	0.257
5	B	354.20	660.48	0.536	0.00	2.65	1.19	19.19	(0.02)	0.203
5	C	500.73	917.75	0.546	0.00	2.44	1.23	19.41	(0.02)	0.147
5	D	504.33	872.64	0.578	0.00	2.86	1.40	22.41	(0.02)	0.168
6	A	565.39	988.81	0.572	0.00	2.56	1.36	21.59	(0.02)	0.145
6	B	296.62	731.68	0.405	0.00	1.19	0.69	10.83	(0.02)	0.139
6	C	419.34	974.02	0.431	0.00	1.23	0.77	11.89	(0.02)	0.109
6	D	422.35	910.08	0.464	0.00	1.40	0.88	13.71	(0.02)	0.124

A1 - (Default Analysis Set) - D5 - Base + CD, AM

Data Errors and Warnings

No errors or warnings
Analysis Set Details

Name	Description	Include In Report	Use Specific Demand Set	Demand Set	Locked	Network Flow Scaling Factor (\%)	Network Capacity Scaling Factor (\%)	Reason For Scaling Factors
(Default Analysis Set)		Yes		(D1)		100.000	100.000	

Demand Set Details

$\begin{gathered} \mathrm{Nam} \\ \mathrm{e} \end{gathered}$	Scenari o Name	Time Perio d Name	Descriptio n	Locke d	Run Automatical ly	Use Relationsh ip	Relationsh ip	Start Time (HH:m m)	Finish Time (HH:m m)	Time Perio d Lengt h (min)	Time Segme nt Length (min)	$\begin{gathered} \text { Traffi } \\ \text { c } \\ \text { Profil } \\ \text { e } \\ \text { Type } \end{gathered}$
$\begin{gathered} \text { Base } \\ + \\ C D \\ \text { AM } \end{gathered}$	$\begin{gathered} \text { Base + } \\ \text { CD } \end{gathered}$	AM			Yes			07:45	09:15	90	15	$\begin{gathered} \text { ONE } \\ \mathrm{HOU} \\ \mathrm{R} \end{gathered}$

Roundabout Network

Roundabout Type(s)

ID	Name	Arm Order	Roundabout Type	Grade Separated	Large Roundabout	Do Geometric Delay
1	(untitled)	A,B,C,D	Standard			

Roundabout Network Options

Driving Side	Lighting	Road Surface	In London
Left	Normal/unknown	$(($ Mini-roundabouts only $))$	

Arms

Arms

ID	Name	Description
A	Wemborough Road (E)	
B	St Andrew's Drive	
C	Wemborough Road (W)	
D	Abercorn Road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)	Assume Flat Start Profile	Initial Queue (PCU)
A	0.00	99999.00		0.00

B	0.00	99999.00		0.00
C	0.00	99999.00	0.00	
D	0.00	99999.00		0.00

Standard Geometry

Arm	V - Approach road half-width (\mathbf{m})	E Entry width (\mathbf{m})	I' - Effective flare length (\mathbf{m})	R - Entry radius (\mathbf{m})	D - Inscribed circle diameter (\mathbf{m})	PHI - Conflict (entry) angle (deg)	Exit Only
A	3.70	4.50	3.40	7.00	19.00	16.50	
B	3.45	4.10	2.10	6.00	19.00	15.00	
C	4.20	4.45	2.80	6.00	19.00	10.00	
D	3.35	4.80	2.60	6.30	19.00	14.00	

Pedestrian Crossings

Arm	Crossing Type
A	None
B	None
C	None
D	None

Arm Slope/ Intercept and Capacity

Slope and Intercept used in model

Arm	Enter Directly	Slope	Intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
A		$(($ calculated))	$(($ calculated))	0.548	1204.008
B		$(($ calculated $))$	$(($ calculated) $)$	0.516	1073.293
C	((calculated))	((calculated))	0.562	1271.998	
D	((calculated))	((calculated))	0.528	1113.227	

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entrylexit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		Yes	Yes	HV Percentages	2.00				Yes	Yes

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (\%)	PHF
A	ONE HOUR	Yes	685.00	100.000	N/A
B	ONE HOUR	Yes	418.00	100.000	N/A
C	ONE HOUR	Yes	583.00	100.000	N/A
D	ONE HOUR	Yes	642.00	100.000	N/A

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
1	A	515.70	529.40	N/A	N/A
1	B	314.69	319.40	N/A	N/A
1	C	438.91	450.04	N/A	N/A
1	D	483.33	489.64	N/A	N/A
2	A	615.80	632.16	N/A	N/A
2	B	375.77	381.39	N/A	N/A
2	C	524.11	537.39	N/A	N/A
2	D	577.14	584.68	N/A	N/A
3	A	754.20	774.24	N/A	N/A
3	B	460.23	467.11	N/A	N/A
3	C	641.89	658.17	N/A	N/A
3	D	706.86	716.08	N/A	N/A
4	A	754.20	774.24	N/A	N/A
4	B	460.23	467.11	N/A	N/A
4	C	641.89	658.17	N/A	N/A
4	D	706.86	716.08	N/A	N/A
5	A	615.80	632.16	N/A	N/A
5	B	375.77	381.39	N/A	N/A
5	C	524.11	537.39	N/A	N/A
5	D	577.14	584.68	N/A	N/A
6	A	515.70	529.40	N/A	N/A
6	B	314.69	319.40	N/A	N/A
6	C	438.91	450.04	N/A	N/A
6	D	483.33	489.64	N/A	N/A

Turning Proportions

Turning Counts or Proportions (Veh/hr) - Roundabout 1 (for whole period)

	To					
From		A	B	C	D	
	A	1.000	84.000	386.000	214.000	
	B	82.000	1.000	40.000	295.000	
	C	383.000	73.000	1.000	126.000	
	D	194.000	371.000	70.000	7.000	

Turning Proportions (Veh) - Roundabout 1 (for whole period)

	To				
		A	B	C	D
	A	0.00	0.12	0.56	0.31
	B	0.20	0.00	0.10	0.71

Vehicle Mix

Average PCU Per Vehicle - Roundabout 1 (for whole period)

	To				
		A	B	C	D
	A	1.000	1.013	1.036	1.015
	B	1.000	1.000	1.053	1.014
	C	1.033	1.000	1.000	1.017
	D	1.011	1.014	1.015	1.000

Heavy Vehicle Percentages - Roundabout 1 (for whole period)

From	To				
		A	B	C	D
	A	0.000	1.300	3.600	1.500
	B	0.000	0.000	5.300	1.400
	C	3.300	0.000	0.000	1.700
	D	1.100	1.400	1.500	0.000

Results

Results Summary

Arm	$\begin{aligned} & \text { Max } \\ & \text { RFC } \end{aligned}$	Max Delay (min)		$\begin{aligned} & \text { Max } \\ & \text { LOS } \end{aligned}$	Total Demand (Veh/hr)		Total Queueing Delay (Veh-min)	Average Queueing Delay (min)	Rate Of Queueing Delay (Vehmin/min)	Inclusive Queueing Total Delay (Veh-min)	Inclusive Queueing Average Delay (min)	Slope	Intercept (PCU/hr)
A	0.87	0.51	6.07	D	628.57	942.85	254.48	0.27	2.83	254.53	0.27	0.548	1204.008
B	0.69	0.29	2.13	C	383.56	575.35	110.84	0.19	1.23	110.86	0.19	0.516	1073.293
C	0.73	0.26	2.67	C	534.97	802.46	136.65	0.17	1.52	136.67	0.17	0.562	1271.998
D	0.90	0.70	7.65	E	589.11	883.67	295.72	0.33	3.29	295.77	0.33	0.528	1113.227

Main Results

Main results: (07:45-08:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	515.70	128.93	511.17	492.88	390.04	0.00	961.96	851.60	0.536	0.00	1.13
B	314.69	78.67	312.10	394.57	506.64	0.00	793.13	622.51	0.397	0.00	0.65
C	438.91	109.73	435.78	370.84	447.89	0.00	991.91	775.44	0.442	0.00	0.78
D	483.33	120.83	478.60	479.35	404.31	0.00	883.41	708.56	0.547	0.00	1.18

Main results: (08:00-08:15)

Arm	Demand	Arrivals	Entry	Exit	Circulating	Pedestrian	Capacity	Saturation	RFC	Start
End										

	(Veh/hr)	(Veh)	Flow (Veh/hr)	Flow (Veh/hr)	Flow (Veh/hr)	Demand (Ped/hr)	(Veh/hr)	Capacity (Veh/hr)	Queue (Veh)	Queue (Veh)	
A	615.80	153.95	612.53	590.77	467.39	0.00	920.14	851.60	0.669	1.13	1.95
B	375.77	93.94	374.34	472.82	607.10	0.00	740.70	622.51	0.507	0.65	1.01
C	524.11	131.03	522.33	444.41	537.02	0.00	942.43	775.44	0.556	0.78	1.23
D	577.14	144.29	573.49	574.69	484.67	0.00	840.59	708.56	0.687	1.18	2.10

Main results: (08:15-08:30)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	754.20	188.55	740.32	716.85	562.46	0.00	868.75	851.60	0.868	1.95	5.42
B	460.23	115.06	456.13	569.56	733.23	0.00	674.89	622.51	0.682	1.01	2.03
C	641.90	160.47	636.55	537.01	652.35	0.00	878.41	775.44	0.731	1.23	2.56
D	706.86	176.71	688.67	698.27	590.63	0.00	784.12	708.56	0.901	2.10	6.64

Main results: (08:30-08:45)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	754.20	188.55	751.58	725.11	572.96	0.00	863.06	851.60	0.874	5.42	6.07
B	460.23	115.06	459.84	579.74	744.82	0.00	668.84	622.51	0.688	2.03	2.13
C	641.90	160.47	641.49	545.25	659.40	0.00	874.50	775.44	0.734	2.56	2.67
D	706.86	176.71	702.82	705.63	595.25	0.00	781.65	708.56	0.904	6.64	7.65

Main results: (08:45-09:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	615.80	153.95	631.38	604.20	485.72	0.00	910.22	851.60	0.677	6.07	2.18
B	375.77	93.94	379.96	490.46	626.64	0.00	730.51	622.51	0.514	2.13	1.08
C	524.11	131.03	529.58	458.30	548.30	0.00	936.17	775.44	0.560	2.67	1.30
D	577.14	144.29	598.42	586.38	491.49	0.00	836.95	708.56	0.690	7.65	2.33

Main results: (09:00-09:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	515.70	128.93	519.66	499.81	397.03	0.00	958.18	851.60	0.538	2.18	1.19
B	314.69	78.67	316.33	401.51	515.18	0.00	788.66	622.51	0.399	1.08	0.67
C	438.91	109.73	440.87	377.03	454.48	0.00	988.25	775.44	0.444	1.30	0.81
D	483.33	120.83	487.69	486.20	409.16	0.00	880.83	708.56	0.549	2.33	1.24

Queueing Delay Results

Queueing Delay results: (07:45-08:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	16.09	1.07	0.132	A	A
B	9.31	0.62	0.124	A	A
C	11.27	0.75	0.107	A	A

\mathbf{D}	16.69	1.11	0.147	A	A

Queueing Delay results: (08:00-08:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	27.41	1.83	0.193	B	B
B	14.47	0.96	0.163	A	A
C	17.63	1.18	0.142	A	A
D	29.21	1.95	0.222	B	B

Queueing Delay results: (08:15-08:30)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	67.90	4.53	0.427	D	C
B	27.96	1.86	0.269	C	B
C	35.12	2.34	0.243	B	B
D	79.54	5.30	0.547	D	C

Queueing Delay results: (08:30-08:45)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	87.14	5.81	0.514	D	C
B	31.42	2.09	0.286	C	B
C	39.42	2.63	0.256	C	B
D	108.36	7.22	0.696	E	D

Queueing Delay results: (08:45-09:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	37.21	2.48	0.226	B	B
B	17.20	1.15	0.173	B	B
C	20.64	1.38	0.149	A	A
D	42.24	2.82	0.272	C	B

Queueing Delay results: (09:00-09:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	18.72	1.25	0.138	A	A
B	10.48	0.70	0.127	A	A
C	12.58	0.84	0.110	A	A
D	19.67	1.31	0.154	A	A

Overview: Standard Roundabout Geometry

Standard Geometry

Arm	V-Approach road half-width (\mathbf{m})	E-Entry width (\mathbf{m})	\mathbf{I} - Effective flare length (\mathbf{m})	R - Entry radius (\mathbf{m})	D - Inscribed circle diameter (\mathbf{m})	PHI - Conflict (entry) angle $($ deg $)$	Exit Only	Final Slope	Final Intercept $($ PCU/hr $)$
A	3.70	4.50	3.40	7.00	19.00	16.50		0.548	1204.008

\mathbf{B}	3.45	4.10	2.10	6.00	19.00	15.00		0.516	1073.293
\mathbf{C}	4.20	4.45	2.80	6.00	19.00	10.00		0.562	1271.998
\mathbf{D}	3.35	4.80	2.60	6.30	19.00	14.00		0.528	1113.227

Overview: Time Segment Results

Time Segment Results

Time Segment	Arm	Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Pedestrian Demand (Ped/hr)	Start Queue (Veh)	End Queue (Veh)	Queueing Total Delay (Veh-min)	Geometric Total Delay (Veh-min)	Average Delay Per Arriving Vehicle (min)
1	A	515.70	961.96	0.536	0.00	0.00	1.13	16.09	(0.02)	0.132
1	B	314.69	793.13	0.397	0.00	0.00	0.65	9.31	(0.02)	0.124
1	C	438.91	991.91	0.442	0.00	0.00	0.78	11.27	(0.02)	0.107
1	D	483.33	883.41	0.547	0.00	0.00	1.18	16.69	(0.02)	0.147
2	A	615.80	920.14	0.669	0.00	1.13	1.95	27.41	(0.02)	0.193
2	B	375.77	740.70	0.507	0.00	0.65	1.01	14.47	(0.02)	0.163
2	C	524.11	942.43	0.556	0.00	0.78	1.23	17.63	(0.02)	0.142
2	D	577.14	840.59	0.687	0.00	1.18	2.10	29.21	(0.02)	0.222
3	A	754.20	868.75	0.868	0.00	1.95	5.42	67.90	(0.02)	0.427
3	B	460.23	674.89	0.682	0.00	1.01	2.03	27.96	(0.02)	0.269
3	C	641.90	878.41	0.731	0.00	1.23	2.56	35.12	(0.02)	0.243
3	D	706.86	784.12	0.901	0.00	2.10	6.64	79.54	(0.02)	0.547
4	A	754.20	863.06	0.874	0.00	5.42	6.07	87.14	(0.02)	0.514
4	B	460.23	668.84	0.688	0.00	2.03	2.13	31.42	(0.02)	0.286
4	C	641.90	874.50	0.734	0.00	2.56	2.67	39.42	(0.02)	0.256
4	D	706.86	781.65	0.904	0.00	6.64	7.65	108.36	(0.02)	0.696
5	A	615.80	910.22	0.677	0.00	6.07	2.18	37.21	(0.02)	0.226
5	B	375.77	730.51	0.514	0.00	2.13	1.08	17.20	(0.02)	0.173
5	C	524.11	936.17	0.560	0.00	2.67	1.30	20.64	(0.02)	0.149
5	D	577.14	836.95	0.690	0.00	7.65	2.33	42.24	(0.02)	0.272
6	A	515.70	958.18	0.538	0.00	2.18	1.19	18.72	(0.02)	0.138
6	B	314.69	788.66	0.399	0.00	1.08	0.67	10.48	(0.02)	0.127
6	C	438.91	988.25	0.444	0.00	1.30	0.81	12.58	(0.02)	0.110
6	D	483.33	880.83	0.549	0.00	2.33	1.24	19.67	(0.02)	0.154

A1 - (Default Analysis Set) - D6 - Base + CD, PM

Data Errors and Warnings

No errors or warnings
Analysis Set Details

Name	Description	Include In Report	Use Specific Demand Set	Demand Set	Locked	Network Flow Scaling Factor	Network Capacity Scaling	Reason For Scaling

						(\%)	Factor (\%)	Factors
(Default Analysis Set)		Yes		(D1)		100.000	100.000	

Demand Set Details

$\begin{gathered} \text { Nam } \\ \mathbf{e} \end{gathered}$	Scenari o Name	Time Perio d Name	Descriptio n	Locke d	Run Automatical ly	Use Relationsh ip	Relationsh ip	Start Time (HH:m m)	Finish Time (HH:m m)	Time Perio d Lengt h (min)	Time Segme nt Length (min)	Traffi C Profil e Type
$\begin{gathered} \text { Base } \\ + \\ \text { CD, } \\ \text { PM } \end{gathered}$	$\begin{gathered} \text { Base + } \\ \text { CD } \end{gathered}$	PM			Yes			16:45	18:15	90	15	$\begin{gathered} \text { ONE } \\ \mathrm{HOU} \\ \mathrm{R} \end{gathered}$

Roundabout Network

Roundabout Type(s)

ID	Name	Arm Order	Roundabout Type	Grade Separated	Large Roundabout	Do Geometric Delay
1	(untitled)	A,B,C,D	Standard			

Roundabout Network Options

Driving Side	Lighting	Road Surface	In London
Left	Normal/unknown	((Mini-roundabouts only))	

Arms

Arms

ID	Name	Description
A	Wemborough Road (E)	
B	St Andrew's Drive	
C	Wemborough Road (W)	
D	Abercorn Road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)	Assume Flat Start Profile	Initial Queue (PCU)
A	0.00	99999.00		0.00
B	0.00	99999.00		0.00
C	0.00	99999.00	0.00	
D	0.00	99999.00		0.00

Standard Geometry

Arm	V - Approach road half-width (\boldsymbol{m})	E-Entry width (\mathbf{m})	I' - Effective flare length (\boldsymbol{m})	R-Entry radius (\boldsymbol{m})	D - Inscribed circle diameter (\boldsymbol{m})	PHI - Conflict (entry) angle (deg)	Exit Only
A	3.70	4.50	3.40	7.00	19.00	16.50	
B	3.45	4.10	2.10	6.00	19.00	15.00	
C	4.20	4.45	2.80	6.00	19.00	10.00	

| \mathbf{D} | 3.35 | 4.80 | 2.60 | 6.30 | 19.00 | 14.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Pedestrian Crossings

Arm	Crossing Type
A	None
B	None
C	None
D	None

Arm Slope/ Intercept and Capacity

Slope and Intercept used in model

Arm	Enter Directly	Slope	Intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
A	$(($ calculated) $)$	((calculated))	0.548	1204.008	
B	((calculated))	((calculated))	0.516	1073.293	
C	$(($ calculated) $)$	((calculated))	0.562	1271.998	
D	((calculated))	((calculated))	0.528	1113.227	

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entrylexit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		Yes	Yes	HV Percentages	2.00				Yes	Yes

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (\%)	PHF
A	ONE HOUR	Yes	805.00	100.000	N/A
B	ONE HOUR	Yes	412.00	100.000	N/A
C	ONE HOUR	Yes	575.00	100.000	N/A
D	ONE HOUR	Yes	579.00	100.000	N/A

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
$\mathbf{1}$	A	606.05	621.14	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{1}$	B	310.18	315.83	$\mathrm{~N} / \mathrm{A}$	N / A

1	C	432.89	444.78	N/A	N/A
1	D	435.90	442.38	N/A	N/A
2	A	723.68	741.70	N/A	N/A
2	B	370.38	377.13	N/A	N/A
2	C	516.91	531.11	N/A	N/A
2	D	520.51	528.24	N/A	N/A
3	A	886.32	908.39	N/A	N/A
3	B	453.62	461.89	N/A	N/A
3	C	633.09	650.48	N/A	N/A
3	D	637.49	646.96	N/A	N/A
4	A	886.32	908.39	N/A	N/A
4	B	453.62	461.89	N/A	N/A
4	C	633.09	650.48	N/A	N/A
4	D	637.49	646.96	N/A	N/A
5	A	723.68	741.70	N/A	N/A
5	B	370.38	377.13	N/A	N/A
5	C	516.91	531.11	N/A	N/A
5	D	520.51	528.24	N/A	N/A
6	A	606.05	621.14	N/A	N/A
6	B	310.18	315.83	N/A	N/A
6	C	432.89	444.78	N/A	N/A
6	D	435.90	442.38	N/A	N/A

Turning Proportions

Turning Counts or Proportions (Veh/hr) - Roundabout 1 (for whole period)

	To					
		A	B	C	D	
	A	2.000	96.000	423.000	284.000	
	B	70.000	0.000	41.000	301.000	
	C	380.000	44.000	0.000	151.000	
	D	175.000	260.000	140.000	4.000	

Turning Proportions (Veh) - Roundabout 1 (for whole period)

	To				
From		A	B	C	D
	A	0.00	0.12	0.53	0.35
	B	0.17	0.00	0.10	0.73
	C	0.66	0.08	0.00	0.26
	D	0.30	0.45	0.24	0.01

Vehicle Mix

Average PCU Per Vehicle - Roundabout 1 (for whole period)
\qquad

From		A	B	C	D
	A	1.000	1.000	1.040	1.011
	B	1.000	1.000	1.051	1.018
	C	1.036	1.000	1.000	1.014
	D	1.012	1.025	1.000	1.000

Heavy Vehicle Percentages - Roundabout 1 (for whole period)

	To				
		A	B	C	D
	A	0.000	0.000	4.000	1.100
	B	0.000	0.000	5.100	1.800
	C	3.600	0.000	0.000	1.400
	D	1.200	2.500	0.000	0.000

Results

Results Summary

Arm	$\begin{aligned} & \text { Max } \\ & \text { RFC } \end{aligned}$	Max Delay (min)		$\begin{aligned} & \text { Max } \\ & \text { LOS } \end{aligned}$	Total Demand (Veh/hr)	Total Arrivals (Veh)	Total Queueing Delay (Veh-min)	Average Queueing Delay (min)	Rate Of Queueing Delay (Vehmin/min)	Inclusive Queueing Total Delay (Veh-min)	Inclusive Queueing Average Delay (min)	Slope	Intercept (PCU/hr)
A	0.98	1.13	16.08	F	738.68	1108.02	513.33	0.46	5.70	513.41	0.46	0.548	1204.008
B	0.79	0.48	3.44	D	378.06	567.09	154.36	0.27	1.72	154.38	0.27	0.516	1073.293
C	0.76	0.29	2.95	C	527.63	791.44	146.49	0.19	1.63	146.51	0.19	0.562	1271.998
D	0.79	0.35	3.59	C	531.30	796.95	173.19	0.22	1.92	173.22	0.22	0.528	1113.227

Main Results

Main results: (16:45-17:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	606.05	151.51	599.94	468.28	334.45	0.00	993.18	863.40	0.610	0.00	1.53
B	310.17	77.54	307.23	298.51	635.89	0.00	724.39	565.24	0.428	0.00	0.74
C	432.89	108.22	429.68	450.33	492.79	0.00	964.81	782.86	0.449	0.00	0.80
D	435.90	108.98	432.20	551.94	370.53	0.00	899.00	736.12	0.485	0.00	0.93

Main results: (17:00-17:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	723.68	180.92	718.13	561.34	401.01	0.00	957.03	863.41	0.756	1.53	2.91
B	370.38	92.59	368.35	357.77	761.38	0.00	659.33	565.24	0.562	0.74	1.24
C	516.91	129.23	514.99	539.32	590.41	0.00	910.69	782.86	0.568	0.80	1.28
D	520.51	130.13	518.25	661.28	444.12	0.00	859.69	736.12	0.605	0.93	1.49

Main results: (17:15-17:30)

	(Veh/hr)	(Veh)	Flow (Veh/hr)	Flow (Veh/hr)	Flow (Veh/hr)	Demand (Ped/hr)	(Veh/hr)	Capacity (Veh/hr)	Queue (Veh)	Queue (Veh)	
A	886.32	221.58	849.64	682.72	487.48	0.00	910.09	863.40	0.974	2.91	12.09
B	453.62	113.40	446.26	432.15	904.96	0.00	584.94	565.24	0.776	1.24	3.08
C	633.09	158.27	627.07	643.16	708.06	0.00	845.46	782.86	0.749	1.28	2.79
D	637.49	159.37	629.88	794.80	540.33	0.00	808.29	736.12	0.789	1.49	3.40

Main results: (17:30-17:45)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	886.32	221.58	870.34	689.40	492.68	0.00	907.27	863.40	0.977	12.09	16.08
B	453.62	113.40	452.20	438.11	924.91	0.00	574.57	565.24	0.789	3.08	3.44
C	633.09	158.27	632.44	656.30	720.81	0.00	838.40	782.86	0.755	2.79	2.95
D	637.49	159.37	636.73	807.91	545.35	0.00	805.62	736.12	0.791	3.40	3.59

Main results: (17:45-18:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	723.68	180.92	774.34	571.62	408.76	0.00	952.83	863.41	0.760	16.08	3.41
B	370.38	92.59	378.28	369.67	813.43	0.00	632.26	565.24	0.586	3.44	1.46
C	516.91	129.23	523.10	572.31	619.40	0.00	894.64	782.86	0.578	2.95	1.40
D	520.51	130.13	528.46	690.57	451.93	0.00	855.53	736.12	0.608	3.59	1.60

Main results: (18:00-18:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	606.05	151.51	613.23	474.80	339.23	0.00	990.58	863.40	0.612	3.41	1.62
B	310.17	77.54	312.94	303.32	649.15	0.00	717.51	565.24	0.432	1.46	0.77
C	432.89	108.22	435.16	459.39	502.69	0.00	959.32	782.86	0.451	1.40	0.83
D	435.90	108.98	438.45	562.28	375.58	0.00	896.31	736.12	0.486	1.60	0.96

Queueing Delay Results

Queueing Delay results: (16:45-17:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	21.39	1.43	0.150	A	A
B	10.49	0.70	0.143	A	A
C	11.53	0.77	0.111	A	A
D	13.20	0.88	0.128	A	A

Queueing Delay results: (17:00-17:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	39.87	2.66	0.245	B	B
B	17.63	1.18	0.205	B	B
C	18.38	1.23	0.151	A	A
D	21.22	1.41	0.175	B	B

Queueing Delay results: (17:15-17:30)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	130.53	8.70	0.735	E	D
B	40.33	2.69	0.412	C	C
C	37.82	2.52	0.268	C	B
D	45.09	3.01	0.323	C	B

Queueing Delay results: (17:30-17:45)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	213.72	14.25	1.129	F	E
B	49.61	3.31	0.480	D	C
C	43.35	2.89	0.289	C	B
D	52.67	3.51	0.351	C	C

Queueing Delay results: (17:45-18:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	81.89	5.46	0.407	C	C
B	24.12	1.61	0.243	B	B
C	22.42	1.49	0.164	A	A
D	25.94	1.73	0.188	B	B

Queueing Delay results: (18:00-18:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	25.93	1.73	0.162	A	A
B	12.18	0.81	0.149	A	A
C	12.99	0.87	0.115	A	A
D	15.07	1.00	0.132	A	A

Overview: Standard Roundabout Geometry

Standard Geometry

Arm	V - Approach road half-width (\mathbf{m})	E - Entry width (\mathbf{m})	I' - Effective flare length (\mathbf{m})	R - Entry radius (\mathbf{m})	D - Inscribed circle diameter (\mathbf{m})	PHI - Conflict $($ entry angle $(\mathbf{d e g})$	Exit Only	Final Slope	Final Intercept $($ PCU/hr)
A	3.70	4.50	3.40	7.00	19.00	16.50		0.548	1204.008
B	3.45	4.10	2.10	6.00	19.00	15.00		0.516	1073.293
C	4.20	4.45	2.80	6.00	19.00	10.00		0.562	1271.998
D	3.35	4.80	2.60	6.30	19.00	14.00		0.528	1113.227

Overview: Time Segment Results

Time Segment Results

Time Segment	Arm	Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Pedestrian Demand (Ped/hr)	Start Queue (Veh)	End Queue (Veh)	Queueing Total Delay (Veh-min)	Geometric Total Delay (Veh-min)	Average Delay Per Arriving

| | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

A1 - (Default Analysis Set) - D7 - Base + CD + Dev, AM

Data Errors and Warnings

No errors or warnings
Analysis Set Details

Name	Description	Include In Report	Use Specific Demand Set	Demand Set	Locked	Network Flow Scaling Factor (\%)	Network Capacity Scaling Factor (\%)	Reason For Scaling Factors
(Default Analysis Set)		Yes		(D1)		100.000	100.000	

Demand Set Details

Nam e	Scenari o Name	Time Perio d Name	Descriptio n	Locke d	Run Automatical ly	Use Relationsh ip	Relationsh ip	Start Time (HH:m m)	Finish Time (HH:m m)	Time Perio d Lengt h (min)	Time Segme nt Length (min)	Traffi C Profil e Type

Base + CD $+$ Dev, AM	$\begin{gathered} \text { Base + } \\ \text { CD + } \\ \text { Dev } \end{gathered}$	AM			Yes				07:45	09:15	90	15	$\begin{gathered} \text { ONE } \\ \mathrm{HOU} \\ \mathrm{R} \end{gathered}$

Roundabout Network

Roundabout Type(s)

ID	Name	Arm Order	Roundabout Type	Grade Separated	Large Roundabout	Do Geometric Delay
1	(untitled)	A,B,C,D	Standard			

Roundabout Network Options

Driving Side	Lighting	Road Surface	In London
Left	Normal/unknown	$(($ Mini-roundabouts only $))$	

Arms

Arms

ID	Name	Description
A	Wemborough Road (E)	
B	St Andrew's Drive	
C	Wemborough Road (W)	
D	Abercorn Road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)	Assume Flat Start Profile	Initial Queue (PCU)
A	0.00	99999.00		0.00
B	0.00	99999.00		0.00
C	0.00	99999.00		0.00
D	0.00	99999.00		0.00

Standard Geometry

Arm	V - Approach road half-width (\mathbf{m})	E Entry width (\mathbf{m})	I' - Effective flare length (\mathbf{m})	R - Entry radius (\mathbf{m})	D - Inscribed circle diameter (\mathbf{m})	PHI - Conflict (entry) angle (deg)	Exit Only
A	3.70	4.50	3.40	7.00	19.00	16.50	
B	3.45	4.10	2.10	6.00	19.00	15.00	
C	4.20	4.45	2.80	6.00	19.00	10.00	
D	3.35	4.80	2.60	6.30	19.00	14.00	

Pedestrian Crossings

Arm	Crossing Type
A	None
B	None
C	None
D	None

Arm Slopel Intercept and Capacity

Slope and Intercept used in model

Arm	Enter Directly	Slope	Intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
A		$(($ calculated) $)$	$(($ calculated))	0.548	1204.008
B		$(($ calculated $))$	((calculated))	0.516	1073.293
C	((calculated))	((calculated))	0.562	1271.998	
D	$(($ calculated) $)$	((calculated))	0.528	1113.227	

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entrylexit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		Yes	Yes	HV Percentages	2.00				Yes	Yes

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (\%)	PHF
A	ONE HOUR	Yes	699.00	100.000	N/A
B	ONE HOUR	Yes	437.00	100.000	N/A
C	ONE HOUR	Yes	599.00	100.000	N/A
D	ONE HOUR	Yes	654.00	100.000	N/A

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
$\mathbf{1}$	A	526.24	539.81	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{1}$	B	329.00	333.70	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{1}$	C	450.96	462.18	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{1}$	D	492.37	498.62	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{2}$	A	628.39	644.59	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{2}$	B	392.85	398.47	N	$\mathrm{~N} / \mathrm{A}$
$\mathbf{2}$	C	538.49	551.89	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{2}$	D	587.93	595.40	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{3}$	A	769.61	489.45	$\mathrm{~N} / \mathrm{A}$	
$\mathbf{3}$	\boldsymbol{B}	481.15	675.93	$\mathrm{~N} / \mathrm{A}$	
$\mathbf{3}$	C	659.51			

$\mathbf{3}$	\mathbf{D}	720.07	729.21	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{4}$	A	769.61	789.45	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{4}$	B	481.15	488.03	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{4}$	C	659.51	675.93	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{4}$	\mathbf{D}	720.07	729.21	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{5}$	A	628.39	644.59	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{5}$	B	392.85	398.47	$\mathrm{~N} / \mathrm{A}$	N
$\mathbf{5}$	C	538.49	551.89	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{5}$	D	587.93	595.40	N	$\mathrm{~N} / \mathrm{A}$
$\mathbf{6}$	A	526.24	539.81	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{6}$	B	329.00	333.70	N	$\mathrm{~N} / \mathrm{A}$
$\mathbf{6}$	C	450.96	492.18	$\mathrm{~N} / \mathrm{A}$	
$\mathbf{6}$	D	492.37			

Turning Proportions

Turning Counts or Proportions (Veh/hr) - Roundabout 1 (for whole period)

	To					
From		A	B	C	D	
	A	1.000	90.000	391.000	217.000	
	B	101.000	1.000	40.000	295.000	
	C	399.000	73.000	1.000	126.000	
	D	206.000	371.000	70.000	7.000	

Turning Proportions (Veh) - Roundabout 1 (for whole period)

	To				
		A	B	C	D
	A	0.00	0.13	0.56	0.31
	B	0.23	0.00	0.09	0.68
	C	0.67	0.12	0.00	0.21
	D	0.31	0.57	0.11	0.01

Vehicle Mix

Average PCU Per Vehicle - Roundabout 1 (for whole period)

	To				
		A	B	C	D
	A	1.000	1.012	1.035	1.015
	B	1.000	1.000	1.053	1.014
	C	1.032	1.000	1.000	1.017
	D	1.010	1.014	1.015	1.000

Heavy Vehicle Percentages - Roundabout 1 (for whole period)

	To				
From		A	B	C	D

	A	0.000	1.200	3.500	1.500
	\mathbf{B}	0.000	0.000	5.300	1.400
	\mathbf{C}	3.200	0.000	0.000	1.700
	\mathbf{D}	1.000	1.400	1.500	0.000

Results

Results Summary

Arm	Max RFC	Max Delay (min)	Max Queue (Veh)	Max LOS	Total Demand (Veh/hr)	Total Arrivals (Veh)	Total Queueing Delay (Veh-min)	Average Queueing Delay (min)	Rate OfQueueing Delay (Veh- min/min)	Queueing Total Delay (Veh-min)	Queueing Average Delay (min)	Slope	Intercept (PCU/hr)
A	0.89	0.57	6.82	D	641.41	962.12	276.98	0.29	3.08	277.03	0.29	0.548	1204.008
B	0.72	0.32	2.50	C	401.00	601.50	125.48	0.21	1.39	125.50	0.21	0.516	1073.293
C	0.77	0.29	3.12	C	549.65	824.48	153.50	0.19	1.71	153.52	0.19	0.562	1271.998
D	0.95	0.97	10.91	F	600.12	900.18	375.89	0.42	4.18	375.95	0.42	0.528	1113.227

Main Results

Main results: (07:45-08:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	526.24	131.56	521.52	527.78	389.84	0.00	962.81	863.36	0.547	0.00	1.18
B	329.00	82.25	326.19	398.87	512.49	0.00	790.72	622.11	0.416	0.00	0.70
C	450.96	112.74	447.62	374.48	464.20	0.00	983.40	773.77	0.459	0.00	0.84
D	492.36	123.09	487.27	481.47	430.34	0.00	870.11	696.08	0.566	0.00	1.27

Main results: (08:00-08:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	628.39	157.10	624.86	632.49	466.95	0.00	921.09	863.36	0.682	1.18	2.06
B	392.85	98.21	391.21	477.79	614.01	0.00	737.74	622.11	0.533	0.70	1.11
C	538.49	134.62	536.48	448.70	556.53	0.00	932.14	773.77	0.578	0.84	1.34
D	587.93	146.98	583.60	577.17	515.84	0.00	824.58	696.08	0.713	1.27	2.36

Main results: (08:15-08:30)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	769.61	192.40	754.03	764.81	557.43	0.00	872.14	863.36	0.882	2.06	5.96
B	481.15	120.29	476.16	571.67	739.79	0.00	672.10	622.11	0.716	1.11	2.36
C	659.51	164.88	652.98	540.78	675.17	0.00	866.27	773.77	0.761	1.34	2.97
D	720.07	180.02	694.39	700.31	627.85	0.00	764.94	696.08	0.941	2.36	8.78

Main results: (08:30-08:45)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow	Exit Flow	Circulating Flow	Pedestrian Demand	Capacity (Veh/hr)	Saturation Capacity	RFC	Start Queue	End Queue

			(Veh/hr)	(Veh/hr)	(Veh/hr)	(Ped/hr)		(Veh/hr)		(Veh)	(Veh)
A	769.61	192.40	766.16	775.20	569.90	0.00	865.39	863.36	0.889	5.96	6.82
B	481.15	120.29	480.60	583.68	752.39	0.00	665.53	622.11	0.723	2.36	2.50
C	659.51	164.88	658.91	549.82	683.17	0.00	861.83	773.77	0.765	2.97	3.12
D	720.07	180.02	711.52	708.50	633.58	0.00	761.88	696.08	0.945	8.78	10.91

Main results: (08:45-09:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow $($ Veh/hr $)$	Circulating Flow $($ Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	628.39	157.10	646.22	651.65	493.53	0.00	906.68	863.36	0.693	6.82	2.36
B	392.85	98.21	398.00	502.74	637.02	0.00	725.75	622.11	0.541	2.50	1.21
C	538.49	134.62	545.25	465.27	569.76	0.00	924.79	773.77	0.582	3.12	1.43
D	587.93	146.98	620.81	590.63	524.38	0.00	820.03	696.08	0.717	10.91	2.69

Main results: (09:00-09:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	526.24	131.56	530.72	535.92	397.72	0.00	958.54	863.36	0.549	2.36	1.24
B	329.00	82.25	330.91	406.69	521.75	0.00	785.89	622.11	0.419	1.21	0.73
C	450.96	112.74	453.21	381.19	471.47	0.00	979.36	773.77	0.460	1.43	0.87
D	492.36	123.09	497.76	488.81	435.87	0.00	867.16	696.08	0.568	2.69	1.34

Queueing Delay Results

Queueing Delay results: (07:45-08:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	16.74	1.12	0.135	A	A
B	10.05	0.67	0.128	A	A
C	11.99	0.80	0.111	A	A
D	17.90	1.19	0.155	A	A

Queueing Delay results: (08:00-08:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	28.91	1.93	0.200	B	B
B	15.91	1.06	0.172	B	B
C	19.13	1.28	0.151	A	A
D	32.52	2.17	0.245	B	B

Queueing Delay results: (08:15-08:30)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	73.57	4.90	0.457	D	C
B	32.05	2.14	0.299	C	B
C	40.09	2.67	0.273	C	B
D	99.24	6.62	0.684	E	D

Queueing Delay results: (08:30-08:45)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	97.03	6.47	0.568	D	C
B	36.70	2.45	0.322	C	B
C	45.93	3.06	0.294	C	B
D	149.53	9.97	0.968	F	E

Queueing Delay results: (08:45-09:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	41.11	2.74	0.245	B	B
B	19.36	1.29	0.186	B	B
C	22.88	1.53	0.161	A	A
D	55.27	3.68	0.344	C	C

Queueing Delay results: (09:00-09:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	19.61	1.31	0.142	A	A
B	11.41	0.76	0.132	A	A
C	13.48	0.90	0.115	A	A
D	21.42	1.43	0.165	A	A

Overview: Standard Roundabout Geometry

Standard Geometry

Arm	V - Approach road half-width (\mathbf{m})	E-Entry width (\mathbf{m})	I' - Effective flare length (\mathbf{m})	R - Entry radius (\mathbf{m})	D - Inscribed circle diameter (\mathbf{m})	PHI - Conflict (entry) angle $(\mathbf{d e g})$	Exit Only	Final Slope	Final Intercept $($ PCU/hr)
A	3.70	4.50	3.40	7.00	19.00	16.50		0.548	1204.008
B	3.45	4.10	2.10	6.00	19.00	15.00		0.516	1073.293
C	4.20	4.45	2.80	6.00	19.00	10.00		0.562	1271.998
D	3.35	4.80	2.60	6.30	19.00	14.00		0.528	1113.227

Overview: Time Segment Results

Time Segment Results

Time Segment	Arm	Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Pedestrian Demand (Ped/hr)	Start Queue (Veh)	End Queue (Veh)	Queueing Total Delay (Veh-min)	Geometric Total Delay (Veh-min)	Average Delay Per Arriving Vehicle (min)
$\mathbf{1}$	A	526.24	962.81	0.547	0.00	0.00	1.18	16.74	(0.02)	0.135
$\mathbf{1}$	B	329.00	790.72	0.416	0.00	0.00	0.70	10.05	(0.02)	0.128
$\mathbf{1}$	C	450.96	983.40	0.459	0.00	0.00	0.84	11.99	(0.02)	0.111
$\mathbf{1}$	D	492.36	870.11	0.566	0.00	0.00	1.27	17.90	(0.02)	0.155
$\mathbf{2}$	A	628.39	921.09	0.682	0.00	1.18	2.06	28.91	(0.02)	0.200
$\mathbf{2}$	B	392.85	737.74	0.533	0.00	0.70	1.11	15.91	(0.02)	0.172

$\mathbf{2}$	\mathbf{C}	538.49	932.14	0.578	0.00	0.84	1.34	19.13	(0.02)	0.151
$\mathbf{2}$	\mathbf{D}	587.93	824.58	0.713	0.00	1.27	2.36	32.52	(0.02)	0.245
$\mathbf{3}$	A	769.61	872.14	0.882	0.00	2.06	5.96	73.57	(0.02)	0.457
$\mathbf{3}$	\mathbf{B}	481.15	672.10	0.716	0.00	1.11	2.36	32.05	(0.02)	0.299
$\mathbf{3}$	\mathbf{C}	659.51	866.27	0.761	0.00	1.34	2.97	40.09	(0.02)	0.273
$\mathbf{3}$	\mathbf{D}	720.07	764.94	0.941	0.00	2.36	8.78	99.24	(0.02)	0.684
$\mathbf{4}$	A	769.61	865.39	0.889	0.00	5.96	6.82	97.03	(0.02)	0.568
$\mathbf{4}$	\mathbf{B}	481.15	665.53	0.723	0.00	2.36	2.50	36.70	(0.02)	0.322
$\mathbf{4}$	\mathbf{C}	659.51	861.83	0.765	0.00	2.97	3.12	45.93	(0.02)	0.294
$\mathbf{4}$	\mathbf{D}	720.07	761.88	0.945	0.00	8.78	10.91	149.53	(0.02)	0.968
$\mathbf{5}$	A	628.39	906.68	0.693	0.00	6.82	2.36	41.11	(0.02)	0.245
$\mathbf{5}$	B	392.85	725.75	0.541	0.00	2.50	1.21	19.36	(0.02)	0.186
$\mathbf{5}$	C	538.49	924.79	0.582	0.00	3.12	1.43	22.88	(0.02)	0.161
$\mathbf{5}$	D	587.93	820.03	0.717	0.00	10.91	2.69	55.27	(0.02)	0.344
$\mathbf{6}$	A	526.24	958.54	0.549	0.00	2.36	1.24	19.61	(0.02)	0.142
$\mathbf{6}$	B	329.00	785.89	0.419	0.00	1.21	0.73	11.41	(0.02)	0.132
$\mathbf{6}$	C	450.96	979.36	0.460	0.00	1.43	0.87	13.48	(0.02)	0.115
$\mathbf{6}$	D	492.36	867.16	0.568	0.00	2.69	1.34	21.42	(0.02)	0.165

A1 - (Default Analysis Set) - D8 - Base + CD + Dev, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Include In Report	Use Specific Demand Set	Demand Set	Network Flow Locked	Network Scaling Factor (\%)	Reason For Factor (\%)	Scaling Factors
(Default Analysis Set)		Yes		(D1)		100.000	100.000	

Demand Set Details

$\begin{gathered} \text { Nam } \\ \text { e } \end{gathered}$	Scenari o Name	Time Perio d Name	Descriptio n	Locke d	Run Automatical ly	Use Relationsh ip	Relationsh ip	Start Time (HH:m m)	Finish Time (HH:m m)	Time Perio d Lengt h (min)	Time Segme nt Length (min)	$\begin{array}{\|c} \hline \text { Traffi } \\ \text { c } \\ \text { Profil } \\ \text { e } \\ \text { Type } \end{array}$
$\begin{gathered} \text { Base } \\ + \text { CD } \\ + \\ \text { Dev, } \\ \text { PM } \end{gathered}$	$\begin{gathered} \text { Base + } \\ \text { CD + } \\ \text { Dev } \end{gathered}$	PM			Yes			16:45	18:15	90	15	$\begin{gathered} \text { ONE } \\ \mathrm{HOU} \\ \mathrm{R} \end{gathered}$

Roundabout Network

Roundabout Type(s)

ID	Name	Arm Order	Roundabout Type	Grade Separated	Large Roundabout	Do Geometric Delay
1	(untitled)	A,B,C,D	Standard			

Roundabout Network Options

Driving Side	Lighting	Road Surface	In London
Left	Normal/unknown	$(($ Mini-roundabouts only $))$	

Arms

Arms

ID	Name	Description
A	Wemborough Road (E)	
B	St Andrew's Drive	
C	Wemborough Road (W)	
D	Abercorn Road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)	Assume Flat Start Profile	Initial Queue (PCU)
A	0.00	99999.00		0.00
B	0.00	99999.00		0.00
C	0.00	99999.00	0.00	
D	0.00	99999.00		0.00

Standard Geometry

Arm	V - Approach road half-width (m)	E - Entry width (m)	I' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
A	3.70	4.50	3.40	7.00	19.00	16.50	
B	3.45	4.10	2.10	6.00	19.00	15.00	
C	4.20	4.45	2.80	6.00	19.00	10.00	
D	3.35	4.80	2.60	6.30	19.00	14.00	

Pedestrian Crossings

Arm	Crossing Type
A	None
B	None
C	None
D	None

Arm Slopel Intercept and Capacity

Slope and Intercept used in model

Arm	Enter Directly	Slope	Intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
A	((calculated))	((calculated))	0.548	1204.008	
B		((calculated))	((calculated))	0.516	1073.293
C	((calculated))	((calculated))	0.562	1271.998	
D	((calculated))	((calculated))	0.528	1113.227	

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entrylexit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		Yes	Yes	HV Percentages	2.00				Yes	Yes

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (\%)	PHF
A	ONE HOUR	Yes	826.00	100.000	N/A
B	ONE HOUR	Yes	414.00	100.000	N/A
C	ONE HOUR	Yes	576.00	100.000	N/A
D	ONE HOUR	Yes	580.00	100.000	N/A

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
1	A	621.86	636.90	N/A	N/A
1	B	311.68	317.33	N/A	N/A
1	C	433.64	445.56	N/A	N/A
1	D	436.65	443.14	N/A	N/A
2	A	742.56	760.53	N/A	N/A
2	B	372.18	378.93	N/A	N/A
2	C	517.81	532.04	N/A	N/A
2	D	521.41	529.15	N/A	N/A
3	A	909.44	931.45	N/A	N/A
3	B	455.82	464.09	N/A	N/A
3	C	634.19	651.62	N/A	N/A
3	D	638.59	648.07	N/A	N/A
4	A	909.44	931.45	N/A	N/A
4	B	455.82	464.09	N/A	N/A
4	C	634.19	651.62	N/A	N/A
4	D	638.59	648.07	N/A	N/A
5	A	742.56	760.53	N/A	N/A
5	B	372.18	378.93	N/A	N/A
5	C	517.81	532.04	N/A	N/A
5	D	521.41	529.15	N/A	N/A
6	A	621.86	636.90	N/A	N/A

$\mathbf{6}$	B	311.68	317.33	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{6}$	C	433.64	445.56	$\mathrm{~N} / \mathrm{A}$	N / A
$\mathbf{6}$	\mathbf{D}	436.65	443.14	$\mathrm{~N} / \mathrm{A}$	N / A

Turning Proportions

Turning Counts or Proportions (Veh/hr) - Roundabout 1 (for whole period)

	To					
		A	B	C	D	
	A	0.000	106.000	431.000	289.000	
	B	72.000	0.000	41.000	301.000	
	C	381.000	44.000	0.000	151.000	
	D	176.000	260.000	140.000	4.000	

Turning Proportions (Veh) - Roundabout 1 (for whole period)

	To				
		A	B	C	D
From	A	0.00	0.13	0.52	0.35
	B	0.17	0.00	0.10	0.73
	C	0.66	0.08	0.00	0.26
	D	0.30	0.45	0.24	0.01

Vehicle Mix

Average PCU Per Vehicle - Roundabout 1 (for whole period)

	To				
		A	B	C	D
	A	1.000	1.000	1.039	1.011
	B	1.000	1.000	1.051	1.018
	C	1.036	1.000	1.000	1.014
	D	1.012	1.025	1.000	1.000

Heavy Vehicle Percentages - Roundabout 1 (for whole period)

	To					
		A	B	C	D	
	A	0.000	0.000	3.900	1.100	
	B	0.000	0.000	5.100	1.800	
	C	3.600	0.000	0.000	1.400	
	D	1.200	2.500	0.000	0.000	

Results

Results Summary

| | RFC | Delay
 (min) | Queue
 (Veh) | LOS | Demand
 (Veh/hr) | Arrivals
 (Veh) | Queueing
 Delay
 (Veh-min) | Queueing
 Delay
 (min) | Queueing
 Delay
 (Veh-
 min/min) | Queueing
 Total
 Delay
 (Veh-min) | Queueing
 Average
 Delay
 (min) | | (PCU/hr) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 1.00 | 1.41 | 21.27 | F | 757.95 | 1136.93 | 636.91 | 0.56 | 7.08 | 637.00 | 0.56 | 0.548 | 1204.008 |
| B | 0.80 | 0.49 | 3.56 | D | 379.89 | 569.84 | 159.65 | 0.28 | 1.77 | 159.67 | 0.28 | 0.516 | 1073.293 |
| C | 0.76 | 0.29 | 2.99 | C | 528.55 | 792.82 | 148.23 | 0.19 | 1.65 | 148.25 | 0.19 | 0.562 | 1271.998 |
| D | 0.79 | 0.35 | 3.62 | C | 532.22 | 798.33 | 174.55 | 0.22 | 1.94 | 174.58 | 0.22 | 0.528 | 1113.227 |

Main Results

Main results: (16:45-17:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	621.86	155.46	615.35	469.76	334.44	0.00	993.86	864.78	0.626	0.00	1.63
B	311.68	77.92	308.68	305.92	643.87	0.00	720.43	569.18	0.433	0.00	0.75
C	433.64	108.41	430.41	456.16	496.40	0.00	962.80	783.06	0.450	0.00	0.81
D	436.65	109.16	432.93	555.55	371.26	0.00	898.61	735.43	0.486	0.00	0.93

Main results: (17:00-17:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	742.56	185.64	736.22	563.11	401.00	0.00	957.69	864.78	0.775	1.63	3.21
B	372.18	93.04	370.07	366.60	770.62	0.00	654.74	569.18	0.568	0.75	1.28
C	517.81	129.45	515.86	546.11	594.59	0.00	908.37	783.06	0.570	0.81	1.30
D	521.41	130.35	519.12	665.46	444.98	0.00	859.23	735.43	0.607	0.93	1.50

Main results: (17:15-17:30)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	909.44	227.36	862.83	684.85	487.41	0.00	910.75	864.78	0.999	3.21	14.86
B	455.82	113.96	448.22	441.51	908.73	0.00	583.22	569.18	0.782	1.28	3.18
C	634.19	158.55	628.10	646.89	710.07	0.00	844.34	783.06	0.751	1.30	2.82
D	638.59	159.65	630.87	796.78	541.39	0.00	807.72	735.43	0.791	1.50	3.43

Main results: (17:30-17:45)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	909.44	227.36	883.80	691.60	492.66	0.00	907.89	864.78	1.002	14.86	21.27
B	455.82	113.96	454.31	447.73	928.73	0.00	572.83	569.18	0.796	3.18	3.56
C	634.19	158.55	633.52	660.11	722.94	0.00	837.21	783.06	0.758	2.82	2.99
D	638.59	159.65	637.81	810.01	546.45	0.00	805.02	735.43	0.793	3.43	3.62

Main results: (17:45-18:00)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow $(\mathrm{Veh} / \mathrm{hr})$	Exit Flow (Veh/hr)	Circulating Flow $(\mathrm{Veh} / \mathrm{hr})$	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	742.56	185.64	812.07	573.40	408.84	0.00	953.44	864.78	0.779	21.27	3.90

B	372.18	93.04	380.14	381.59	839.32	0.00	619.01	569.18	0.601	3.56	1.57
C	517.81	129.45	524.03	589.18	630.27	0.00	888.61	783.06	0.583	2.99	1.43
D	521.41	130.35	529.47	701.53	452.76	0.00	855.08	735.43	0.610	3.62	1.61

Main results: (18:00-18:15)

Arm	Demand (Veh/hr)	Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	RFC	Start Queue (Veh)	End Queue (Veh)
A	621.86	155.46	630.51	476.43	339.25	0.00	991.25	864.78	0.627	3.90	1.73
B	311.68	77.92	314.78	311.11	658.65	0.00	712.76	569.18	0.437	1.57	0.79
C	433.64	108.41	436.01	466.19	507.24	0.00	956.79	783.06	0.453	1.43	0.84
D	436.65	109.16	439.22	566.80	376.45	0.00	895.84	735.43	0.487	1.61	0.97

Queueing Delay Results

Queueing Delay results: (16:45-17:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	22.71	1.51	0.156	A	A
B	10.67	0.71	0.145	A	A
C	11.60	0.77	0.112	A	A
D	13.26	0.88	0.128	A	A

Queueing Delay results: (17:00-17:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	43.55	2.90	0.263	C	B
B	18.07	1.20	0.209	B	B
C	18.55	1.24	0.152	A	A
D	21.33	1.42	0.175	B	B

Queueing Delay results: (17:15-17:30)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	153.68	10.25	0.849	F	D
B	41.40	2.76	0.422	D	C
C	38.20	2.55	0.270	C	B
D	45.48	3.03	0.326	C	B

Queueing Delay results: (17:30-17:45)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	273.68	18.25	1.409	F	F
B	51.21	3.41	0.494	D	C
C	43.86	2.92	0.293	C	B
D	53.22	3.55	0.355	C	C

Queueing Delay results: (17:45-18:00)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service

A	115.27	7.68	0.561	D	C
B	25.85	1.72	0.259	C	B
C	22.90	1.53	0.167	B	B
D	26.12	1.74	0.189	B	B

Queueing Delay results: (18:00-18:15)

Arm	Queueing Total Delay (Veh-min)	Queueing Rate Of Delay (Veh-min/min)	Average Delay Per Arriving Vehicle (min)	Unsignalised Level Of Service	Signalised Level Of Service
A	28.01	1.87	0.170	B	B
B	12.45	0.83	0.152	A	A
C	13.10	0.87	0.116	A	A
D	15.14	1.01	0.132	A	A

Overview: Standard Roundabout Geometry

Standard Geometry

Arm	V - Approach road half-width (m)	E - Entry width (m)	I' Effective flare length (m)
A	3.70	4.50	3.40
B	3.45	4.10	2.10
C	4.20	4.45	2.80
D	3.35	4.80	2.60

R - Entry radius (\mathbf{m})	D - Inscribed circle diameter (\mathbf{m})	PHI - Conflict (entry) angle $(\mathbf{d e g})$	Exit Only	Final Slope	Final Intercept (PCU/hr)
7.00	19.00	16.50		0.548	1204.008
6.00	19.00	15.00		0.516	1073.293
6.00	19.00	10.00		0.562	1271.998
6.30	19.00	14.00		0.528	1113.227

Overview: Time Segment Results

Time Segment Results

Time Segment	Arm	Demand (Veh/hr)	Capacity (Veh/hr)	RFC	Pedestrian Demand (Ped/hr)	Start Queue (Veh)	End Queue (Veh)	Queueing Total Delay (Veh-min)	Geometric Total Delay (Veh-min)	Average Delay Per Arriving Vehicle (min)
1	A	621.86	993.86	0.626	0.00	0.00	1.63	22.71	(0.02)	0.156
1	B	311.68	720.43	0.433	0.00	0.00	0.75	10.67	(0.02)	0.145
1	C	433.64	962.80	0.450	0.00	0.00	0.81	11.60	(0.02)	0.112
1	D	436.65	898.61	0.486	0.00	0.00	0.93	13.26	(0.02)	0.128
2	A	742.56	957.69	0.775	0.00	1.63	3.21	43.55	(0.02)	0.263
2	B	372.18	654.74	0.568	0.00	0.75	1.28	18.07	(0.02)	0.209
2	C	517.81	908.37	0.570	0.00	0.81	1.30	18.55	(0.02)	0.152
2	D	521.41	859.23	0.607	0.00	0.93	1.50	21.33	(0.02)	0.175
3	A	909.44	910.75	0.999	0.00	3.21	14.86	153.68	(0.02)	0.849
3	B	455.82	583.22	0.782	0.00	1.28	3.18	41.40	(0.02)	0.422
3	C	634.19	844.34	0.751	0.00	1.30	2.82	38.20	(0.02)	0.270
3	D	638.59	807.72	0.791	0.00	1.50	3.43	45.48	(0.02)	0.326
4	A	909.44	907.89	1.002	0.00	14.86	21.27	273.68	(0.02)	1.409
4	B	455.82	572.83	0.796	0.00	3.18	3.56	51.21	(0.02)	0.494
4	C	634.19	837.21	0.758	0.00	2.82	2.99	43.86	(0.02)	0.293
4	D	638.59	805.02	0.793	0.00	3.43	3.62	53.22	(0.02)	0.355

$\mathbf{5}$	A	742.56	953.44	0.779	0.00	21.27	3.90	115.27	(0.02)	0.561
$\mathbf{5}$	B	372.18	619.01	0.601	0.00	3.56	1.57	25.85	(0.02)	0.259
$\mathbf{5}$	C	517.81	888.61	0.583	0.00	2.99	1.43	22.90	(0.02)	0.167
$\mathbf{5}$	D	521.41	855.08	0.610	0.00	3.62	1.61	26.12	(0.02)	0.189
$\mathbf{6}$	A	621.86	991.25	0.627	0.00	3.90	1.73	28.01	(0.02)	0.170
$\mathbf{6}$	B	311.68	712.76	0.437	0.00	1.57	0.79	12.45	(0.02)	0.152
$\mathbf{6}$	C	433.64	956.79	0.453	0.00	1.43	0.84	13.10	(0.02)	0.116
$\mathbf{6}$	D	436.65	895.84	0.487	0.00	1.61	0.97	15.14	(0.02)	0.132

APPENDIX 9

PTAI Study Report File Summary

PTAI Run Parameters

PTAI Run	20142305144724
Description	20142305144724
Run by user	PTAL web application

Date and time 23/05/2014 14:47

Walk File Parameters

Walk File	PLSQLTest
Day of Week	M-F
Time Period	AM Peak
Walk Speed	4.8 kph
BUS Walk Access Time (mins)	8
BUS Reliability Factor	2.0
LU LRT Walk Access Time (mins)	12
LU LRT Reliability Factor	0.75
NATIONAL_RAIL Walk Access Time (mins)	12
NATIONAL_RAIL Reliability Factor	0.75

Coordinates: 517579, 191147

Mode	Stop		Route	Distance (metres)	Frequency $(\mathbf{v p h})$	Weight	Walk time $(\mathbf{m i n s})$	SWT $(\mathbf{m i n s})$	TAT $(\mathbf{m i n s})$	EDF AI

BUS	WHITCHURCH LANE MARSH LN	79	263.33	5.0	1.0	3.29	8.0	11.29	2.662 .66
BUS	WHITCHURCH LANE MARSH LN	340	263.33	5.0	0.5	3.29	8.0	11.29	2.661 .33
BUS	ABERCORN ROAD	324	421.63	3.0	0.5	5.27	12.0	17.27	1.740 .87
$\begin{aligned} & \text { LU } \\ & \text { LRT } \end{aligned}$	Canons Park	Jubilee Line Stanmore to Stratford	639.9	17.8	1.0	8.0	2.44	10.43	2.882 .88

APPENDIX 10

2015 Avanti House School

School Travel Plan

1. Introduction
2. Survey Results
3. Working group \& Involvement

4. Travel \& Transport Issues

5. Objectives \& Targets
6. Consultation and Collaboration
7. Travel Initiatives
8. Monitoring and Review
9. Sign off and Formal Approval

Introduction

Description of the school	
School Name*:	Avanti House School
School Address*:	Common Road, Stanmore, HA7 3JB
Travel Plan Coordinator*:	Nadira Morris
Telephone Number*:	02082496830
Email Address:	nadira.morris@avanti.org.uk
Website Address:	http://harrowtp.org/teachers/www.avanti.org.uk
DcSF Number*:	310/4000
Type of School	Secondary
Location of the school*:	School is situated to the east of the A409 Common Road and southwest of the redeveloped Bentley Priory estate site, which provides 93 residential units and a museum.
Pedestrian and school entrances*:	The main school entrance is located on Common Road, Stanmore. The A409 Common Road benefits from street lighting, wide footway on its northwestern side and existing school signage alerting drivers to the fact that there may be children crossing the road. This section of the road is subject to a

Description of the school

40mph speed limit. A pedestrian refuge island is provided across the A409 Common Road adjacent to the school access, facilitating pedestrian access from footway on the northwestern side of the road.
Uncontrolled pedestrian crossing facilities are provided at the A409 Magpie Hall Road/A4140. North and South of the crossroads continous footways are provided on both sides of the carriageway connecting to Stanmore and Bushey local centres.

School Map

Catchment area*: The catchment area of Avanti House (Secondary School element) shows a geographical spread of current Year 7 students as well as those enrolled to start in September 2014, reasonable proportion of which 53\% reside within the adjourning postcode areas of HA3, HA7, HA8, HA5, HA1, HA2, HA9 and would have the opportunity to walk and cycle to school.

Facilities

	Description	Numbers
Car Park	No. of staff parking spaces	20
	No. of visitor spaces:	1
	No. of disables spaces:	1
Cycle Storage	Received free Cycle Storage (Mayor's Scheme):	
	Covered Sheffield Stands	nil
	Sheffield Stands	nil
	Cycle Racks	
	Cycle Pod / Mini Pod	nil
	Other Cycle Spaces	nil
	Scooter Parking Available	nil
If storage is available, how secure is it?		
Storage Lockers:	No. of staff storage lockers:	18
	No. of pupils storage lockers:	nil

Facilities

Shower Facilities:
Are staff shower facilities available:

Are pupil shower facilities available:

School opening and closing times*:

	Start Time:	Finish Time:
School Site:	07.00	18.00
Pupils official school time:	$08: 00$	$15: 20$
Breakfast Club (if applicable)	$07: 30$	$08: 00$
After school Club (if applicable)	$15: 30$	$17: 00$

Buses*:

Map

Bus service 258 runs from Watford Junction station to South Harrow station. Bus stops are located at regular intervals along the A409 Common Road of which the nearest is located 50m southwest of the school access for services in both directions. Each stop is provided with a bus shelter. this route provides four services per hour through daytime hours, Monday - Saturday.

Bus 142 service runs from Watford Junction Station, Stanmore Underground to Brent Cross centre and stops at the High Road (A4140), 500m northeast of the school. Service 142 operates 5 hourly services through weekday daytime periods, reducing to 3-4 hourly services through evenings and Sundays. This service provided an opportunity, particularly for secondary school children to access the school from the Stanmore area, completing the journey on foot.

Trains / Tubes*:

Stanmore London Underground station is the northern terminus of the Jubilee Line which runs into central London. Stanmore LU is located approximately 4 kilometres to the east of the school site. From this station, direct access can be gained to the school site using bus route 142 followed by a 500 m walk.
Bushey rail station is located approximately 4.6 kilometres to the north-west of the application site. Bus route 258 stops outside Bushey rail station and connects directly with the school site.

Roads*:
Within 5 kilometres of Avanti House school there is a comprehensive network of on and off-road cycle routes, the London Outer Orbital Path runs along the southern boundary of the Bentley Priory Estate.

The A409 Common Road benefits from street lighting, wide footway on its northwestern side and existing school signage alerting drivers to the fact that there may be children crossing the road. This section of the A409 is subject to a 40 mph speed limit. A pedestrian refuge island is provided across the A409 Common Road adjacent to the school access, facilitating pedestrian access from footway on the northwestern side of the road.

Pupils and staff numbers

Pupils roll*:	316
Age range of pupils*:	$11-13$
Number of pupils entitled to SEN nil transportation and how their needs are taken into account	
Full - Time Staff roll*:	32
Part - Time Staff roll:	3
Support Staff roll:	9

About our Pupils and Staff
Pupils roll*: 316

Age range of pupils*: 11-13

Other information about the pupils who attend our school:
Staff roll*: 44

Other information about the people who work at our school:

Survey Results

Pupils Hands Up Results

Responses: 311
Response Rate: 98 \%
Data Collection Date: Monday 01st December 2014

	Actual Mode of Travel									
	Bus	School Bus	Car	Car Share	Cycle	Park / Stride	Rail	Scooting	Walk	Other
Total 2015 Responses: 311	105	13	97	77	0	1	14	0	4	0
\%	34\%	4\%	31\%	25\%	0\%	0\%	5\%	0\%	1\%	0\%
Total 2014 Responses: 184	51	1	69	43	0	0	17	0	3	0
\%	28\%	1\%	38\%	23\%	0\%	0\%	9\%	0\%	2\%	0\%

	Preferred Mode of Travel									
	Bus	School Bus	Car	Car Share	Cycle	Park / Stride	Rail	Scooting	Walk	Other
$\begin{aligned} & \text { Total } \\ & 2015 \end{aligned}$	63	17	119	35	23	13	11	0	19	11

$\%$	20%	5%	38%	11%	7%	4%	4%	0%	6%	4%
Total 2014	44	3	57	21	23	0	12	0	3	21

$\% \quad 24 \% \quad 2 \% \quad 31 \% \quad 11 \% \quad 13 \% \quad 0 \% \quad 7 \% \quad 0 \% \quad 2 \% \quad 11 \%$

Staff survey Results

Responses: 34
Response Rate: 77\%
Data Collection Date: Monday 05th January 2015

	Actual Mode of of Travel							
	Bus	Car	Car Share	Cycle	Park / Walk	Rail	Walk	Other
Total 2015 Responses: 34	4	18	8	0	0	4	0	0
\%	12\%	53\%	24\%	0\%	0\%	12\%	0\%	0\%
Total 2014 Responses: 55	18	6	4	0	0	18	9	0
\%	33\%	11\%	7\%	0\%	0\%	33\%	16\%	0\%

	Preferred Mode of Travel							
	Bus	Car	Car Share	Cycle	Park / Walk	Rail	Walk	Other
Total 2015	3	14	14	0	0	3	0	0
\%	9\%	41\%	41\%	0\%	0\%	9\%	0\%	0\%
Total 2014	9	15	4	0	0	9	0	0
\%	16\%	27\%	7\%	0\%	0\%	16\%	0\%	0\%

LONDON

Working Group and Involvement

```
Working Group
```

Nadira Morris	School Travel Plan Advisor
Upendra Kalan	Bursar / School Office
Mark Bennison	Headteacher
Toby Gosden	Assistant
Nadira Morris	Deputy Head teacher
Funmi Atolagbe	Travel Planner (Harrow Council)

LONDON

Travel and Transport Issues - Toby to complete/update

Original Travel and Transportation Issues

| Details of the issue/concern \quad PhotoIs this still an
 issue? |
| :--- | :--- |

New Travel and Transport Issues

Objectives and Targets

Modal Shift

		Car	Car Share	Bus	Dedicated Bus	Rail	Cycle	Walk	Park Then Walk	Scooting	Other	Total
2015	Number	97	77	105	13	14	0	4	1	0	0	311
	\%	31\%	25\%	34\%	4\%	5\%	0\%	1\%	0\%	0\%	0\%	
2014	Number	69	43	51	1	17	0	3	0	0	0	184
	\%	38\%	23\%	28\%	1\%	9\%	0\%	2\%	0\%	0\%	0\%	
2013	Number											0
	\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
2012	Number											0
	\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
2011	Number											0
	\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
2010	Number											0
	\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	

New Objectives

S1. Committed to ensuring that everyone travelling to and from the school can do so as safely as possible - The school will encourage staff and students to make transport choices that demonstrate absolute regard for the need to minimise potential damage to the environment.

S2. To raise awareness of road safety and environmental issues relating to mode of travel choices.

A01. Ensure that staff and students travel to and from the school by foot, bicycle and/or public transport and that they are offered assistance in identifying routes by which they can travel by these modes.

AO2. To maximise opportunities for the use of alternative modes of travel.

H1. Aim to provide a focus for a range of initiatives to encourage journeys to the school by sustainable modes of transport and to inform the targets that in turn will assist in identifying and evaluating its success or otherwise.

H2. To increase awareness of the health benefits of walking and sycling to the school

E1. To reduce congestion on surrounding roads thereby improving road safety and minimising the effects in terms of emissions.

New Targets

T1. To reduce the percentage of journeys by cars to and from the school by 2\% by September 2015

T2. To increase the percentage of students using sustainable modes of travel by walking/cycling or public transport by 5\% by September 2015.

Consultation and Collaboration

Code	Activity	Details
$\stackrel{i}{s 1}^{s}$	The school has an STP working group (should include student representatives)	Use the 'Working Group \& Involvement' tab above to complete this action
${ }_{52}$	Conducted consultation with parents: Evidence of questionnaires, survey results	
$\stackrel{i}{53}^{4}$	Whole school community involvement: Evidence of minutes of meetings with governors, staff, management team and school council	
$\stackrel{4}{5}$	Pupil involvement: evidence of pupils work relating to the plan (e.g. updating plan, run travel initiatives, survey analysis, posters, monitoring of WoW)	
${ }_{55}$	The school has carried out in depth research/alternative consultation methods (e.g. walking/cycling audits with pupils, mapping exercises)	
$\sqrt{4}$	Residents and neighbours are aware of the schools plans to promote more safe and active travel	
$\stackrel{i}{4}_{\text {G2 }}^{4}$	The travel plan is an agenda item on at least one governors/ senior management meeting a year	
$\stackrel{4}{4}$	Safe and active travel is part of the School Improvement Plan/ School Development Plan.	

Further Information:
Use this section to state what other

LONDON

Code	Activity
	consultation your school is doing or why your school has not been able to meet one of the criteria above.

Details are
included on how
any funding
allocation of the
capital grant has
been spent
If applicable,
provide information
or evidence on how
the school has
spent other funding
from the Local
Authority (Small
Claim grants...)
The school has
identified and
obtained other sources of funding aside from that available from the local authority

Initiatives - Action Plan

Planned Initiatives

Initiative	Details	Reporting		
Evidence (where required)				
Walking				
W3 Walk to school week	TPC	May 2015		Publicise local pedestrian routes on school website and
:---				
promote participation in 'Walk to School Week' in May every				
year.				

Cycling		
C4	TPC	Provide cycle training through the Government-supported
Cycle training for pupils (E.g. Bikeability)	May 2015	'Bikeability' scheme (www.dft.gov.uk/bikeability).

Smarter Driving

SD1	TPC	Encourage car-sharing by directing parents towards
School	May 2015	websites such as http:www.school-carshare.co.uk where they can register to find other local people travelling to the
promotes car		school.
sharing/has a		

car pool
scheme

SD7	TPC	Set up list of marshalls, rota and 'back up' marshalls for both
Other Smarter	May 2015	AM and PM drop-off / pick-up periods on every school day -
Driving		ensuring 4-5 marshalls are on-site to manage traffic flow. Initiatives
		Marshalls should be provided with a strategy document for effective traffic management.

Initiative	Details Reporting
Walking	Evidence (where required)

Public Transportation	
PT2	TPC
School May 2015 promotes public transport	
Promotion	

PR1	TPC	Re-engage parents through website and newsletters on Newsletter\quad May 2015
		surveyed to identify strategic collection / drop-off locations. Within newsletter also provide updates on Travel Plan,
	survey results and new initiatives.	

PR2	TPC	Notice boards to be placed in a communal area near the
Notice Board \quad May 2015	entrance of the main building and in the staff room. Notice boards will display information related to the Travel Plan and	
	sustainable transport. They will display details of existing facilities such as bus routes and the locations of the nearby	
	underground and rail stations, in addition to cycle routes in the vicinity of the school.	

PR6 TPC Update school website to provide page on travel, including
Information on May 2015 information on walk / cycle initiatives, public transport, and
website updates on the Travel Plan.

PR8	TPC	Update school prospectus to include statement on Travel
Within the	May 2015	Planning and expectation that wherever possible students should travel to school by sustainable modes.
Prospectus		shold

| Initiative Details Reporting | Evidence
 (where
 required) |
| :--- | :--- | :--- |
| Walking | |

PR14 TPC Publicise improvements to local cycle routes and public
Distributing transport information via school website / newsletters
cycling and
public transport
maps

PR15	TPC	Investigate potential to provide additional stagger to start /
Other	May 2015	finish times ie. separate start and finish times for Years 7, 8 promotion method
	and 9.	

Road Safety

R4	MTP /	Investigate potential for physical works to improve school
Other Road	TPC	access way and road safety within school site eg. Localised
Safety	May 2015	widening to allow for drop-offs / pick-ups on both sides of
Initiatives		school access whilst still facilitating two-way traffic flow.

Sign off and Formal Approval

Our next hands up surveys be on: October 2015
Our Annual Progress review will be completed in: January 2016, 2017, 2018, 2019, 2020, 2021 and 2022
The person responsible for ensuring that the annual review will be actioned is : Nadira Morris

When reviewing our School travel Plan we will take into consideration any issues arising from new developments in education and transport since the original STP was completed with specific emphasis on the proposed school expansion.

Sign off and formal approval of STP

School Name: Avanti House School
School travel plan champion Nadira Morris
Year of school travel plan document 2015
School signatures
Approval of the school travel plan by the school travel plan champion confirms the schools management (including but not limited to the Head Teacher and Governors) have read, understood and agreed to the contents of this document. Avanti House School further acknowledges that they have committed to achieving all targets highlighted in their action plan and to the annual review and monitoring of the plan.

School Travel Plan
Champion*
Head Teacher's Name*:
Chair of Governors
Name*:

Pupil Representatives
(Optional):
Parent Governors
(Optional):
Other Stakeholders
involved (Optional):
e.g. Police, bus operators
etc.
Council signatures
The following signatures confirm that the document has been Quality Assessed checked by representatives from The London Borough of Harrow.

APPENDIX 11

TRI P RATE CALCULATI ON SELECTI ON PARAMETERS:

Land Use : 04-EDUCATION
Category : B - SECONDARY

MULTI-MODAL CYCLI STS

Selected regions and areas:

01 GREATER LONDON

BN	BARNET	1 days
HM	HAMMERSMITH AND FULHAM	1 days
IS	ISLINGTON	1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

Filtering Stage 2 selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Number of pupils	
Actual Range:	610 to 1200 (units:)	
Range Selected by User:	610 to 1200 (units:)	
Public Transport Provision:		
Selection by:		Include all surveys

Date Range: $\quad 01 / 01 / 00$ to $25 / 11 / 09$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:
Wednesday 3 days
This data displays the number of selected surveys by day of the week.

Selected survey types:

```
Manual count
3 days
Directional ATC Count 0 days
```

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Suburban Area (PPS6 Out of Centre)
3
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:

Residential Zone
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Filtering Stage 3 selection:

Use Class:
D1 3 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 1 mile:
25,001 to 50,000 1 days
50,001 to $100,000 \quad 2$ days
This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:
500,001 or More 3 days
This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:
0.6 to $1.0 \quad 3$ days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:

```
Not Known
1 days
No
2 days
```

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

LIST OF SITES relevant to selection parameters

1 BN-04-B-01 SECONDARY SCHOOL BARNET
CHESTNUT GROVE
EAST BARNET
Suburban Area (PPS6 Out of Centre)
Residential Zone

Total Number of pupils: 1200
Survey date: WEDNESDAY 19/10/05
2 HM-04-B-01 SECONDARY SCHOOL
KINGWOOD ROAD
FULHAM
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Number of pupils: 610 Survey date: WEDNESDAY 04/12/02
3 IS-04-B-01 SECONDARY SCH.
TURLE ROAD
FINSBURY PARK
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Number of pupils: 850 Survey date: WEDNESDAY 25/11/09 Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

MANUALLY DESELECTED SITES

Site Ref	
LB-04-B-01	Too Central

TRIP RATE for Land Use 04 - EDUCATION/B - SECONDARY

MULTI-MODAL CYCLISTS
Calculation factor: 1 PUPI LS
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. PUPILS	Trip Rate	No. Days	Ave. PUPILS	Trip Rate	No. Days	Ave. PUPILS	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	3	887	0.002	3	887	0.000	3	887	0.002
08:00-09:00	3	887	0.008	3	887	0.000	3	887	0.008
09:00-10:00	3	887	0.000	3	887	0.000	3	887	0.000
10:00-11:00	3	887	0.001	3	887	0.000	3	887	0.001
11:00-12:00	3	887	0.000	3	887	0.000	3	887	0.000
12:00-13:00	3	887	0.000	3	887	0.000	3	887	0.000
13:00-14:00	3	887	0.000	3	887	0.000	3	887	0.000
14:00-15:00	3	887	0.000	3	887	0.002	3	887	0.002
15:00-16:00	3	887	0.002	3	887	0.006	3	887	0.008
16:00-17:00	3	887	0.000	3	887	0.005	3	887	0.005
17:00-18:00	3	887	0.000	3	887	0.001	3	887	0.001
18:00-19:00	2	1025	0.000	2	1025	0.000	2	1025	0.000
19:00-20:00									
20:00-21:00									
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			0.013			0.014			0.027

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
610-1200 (units:)
Survey date date range:
01/01/00-25/11/09
Number of weekdays (Monday-Friday):
3
Number of Saturdays: 0
Number of Sundays: 0
Surveys manually removed from selection: 1
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 04 - EDUCATION/B - SECONDARY

MULTI-MODAL VEHI CLE OCCUPANTS
Calculation factor: 1 PUPI LS
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. PUPILS	Trip Rate	No. Days	Ave. PUPILS	Trip Rate	No. Days	Ave. PUPILS	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	3	887	0.029	3	887	0.003	3	887	0.032
08:00-09:00	3	887	0.129	3	887	0.039	3	887	0.168
09:00-10:00	3	887	0.031	3	887	0.012	3	887	0.043
10:00-11:00	3	887	0.022	3	887	0.017	3	887	0.039
11:00-12:00	3	887	0.008	3	887	0.011	3	887	0.019
12:00-13:00	3	887	0.019	3	887	0.013	3	887	0.032
13:00-14:00	3	887	0.011	3	887	0.009	3	887	0.020
14:00-15:00	3	887	0.011	3	887	0.027	3	887	0.038
15:00-16:00	3	887	0.012	3	887	0.063	3	887	0.075
16:00-17:00	3	887	0.007	3	887	0.044	3	887	0.051
17:00-18:00	3	887	0.008	3	887	0.017	3	887	0.025
18:00-19:00	2	1025	0.012	2	1025	0.012	2	1025	0.024
19:00-20:00									
20:00-21:00									
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			0.299			0.267			0.566

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

610-1200 (units:)
01/01/00-25/11/09
3
0
0
1

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 04 - EDUCATION/B - SECONDARY

MULTI-MODAL PEDESTRIANS
Calculation factor: 1 PUPI LS
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. PUPILS	Trip Rate	No. Days	Ave. PUPILS	Trip Rate	No. Days	Ave. PUPILS	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	3	887	0.039	3	887	0.005	3	887	0.044
08:00-09:00	3	887	0.358	3	887	0.006	3	887	0.364
09:00-10:00	3	887	0.053	3	887	0.005	3	887	0.058
10:00-11:00	3	887	0.017	3	887	0.027	3	887	0.044
11:00-12:00	3	887	0.016	3	887	0.012	3	887	0.028
12:00-13:00	3	887	0.008	3	887	0.020	3	887	0.028
13:00-14:00	3	887	0.024	3	887	0.020	3	887	0.044
14:00-15:00	3	887	0.021	3	887	0.014	3	887	0.035
15:00-16:00	3	887	0.024	3	887	0.393	3	887	0.417
16:00-17:00	3	887	0.008	3	887	0.027	3	887	0.035
17:00-18:00	3	887	0.004	3	887	0.011	3	887	0.015
18:00-19:00	2	1025	0.003	2	1025	0.003	2	1025	0.006
19:00-20:00									
20:00-21:00									
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			0.575			0.543			1.118

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
610-1200 (units:)
Survey date date range:
01/01/00-25/11/09
Number of weekdays (Monday-Friday):
3
Number of Saturdays: 0
Number of Sundays: 0
Surveys manually removed from selection: 1
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 04 - EDUCATION/B - SECONDARY

MULTI-MODAL PUBLIC TRANSPORT USERS

Calculation factor: 1 PUPI LS
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. PUPILS	Trip Rate	$\begin{aligned} & \text { No. } \\ & \text { Days } \\ & \hline \end{aligned}$	Ave. PUPILS	Trip Rate	No. Days	Ave. PUPILS	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	3	887	0.036	3	887	0.000	3	887	0.036
08:00-09:00	3	887	0.233	3	887	0.000	3	887	0.233
09:00-10:00	3	887	0.064	3	887	0.011	3	887	0.075
10:00-11:00	3	887	0.005	3	887	0.001	3	887	0.006
11:00-12:00	3	887	0.002	3	887	0.000	3	887	0.002
12:00-13:00	3	887	0.003	3	887	0.002	3	887	0.005
13:00-14:00	3	887	0.011	3	887	0.000	3	887	0.011
14:00-15:00	3	887	0.002	3	887	0.019	3	887	0.021
15:00-16:00	3	887	0.037	3	887	0.322	3	887	0.359
16:00-17:00	3	887	0.007	3	887	0.024	3	887	0.031
17:00-18:00	3	887	0.000	3	887	0.023	3	887	0.023
18:00-19:00	2	1025	0.012	2	1025	0.015	2	1025	0.027
19:00-20:00									
20:00-21:00									
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			0.412			0.417			0.829

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

610-1200 (units:)
01/01/00-25/11/09
3
0
0
1

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 04 - EDUCATION/B - SECONDARY

MULTI-MODAL TOTAL PEOPLE
Calculation factor: 1 PUPI LS
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. PUPILS	Trip Rate	No. Days	Ave. PUPILS	Trip Rate	No. Days	Ave. PUPILS	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	3	887	0.105	3	887	0.008	3	887	0.113
08:00-09:00	3	887	0.729	3	887	0.045	3	887	0.774
09:00-10:00	3	887	0.148	3	887	0.028	3	887	0.176
10:00-11:00	3	887	0.044	3	887	0.045	3	887	0.089
11:00-12:00	3	887	0.026	3	887	0.024	3	887	0.050
12:00-13:00	3	887	0.030	3	887	0.034	3	887	0.064
13:00-14:00	3	887	0.046	3	887	0.029	3	887	0.075
14:00-15:00	3	887	0.035	3	887	0.062	3	887	0.097
15:00-16:00	3	887	0.076	3	887	0.785	3	887	0.861
16:00-17:00	3	887	0.022	3	887	0.100	3	887	0.122
17:00-18:00	3	887	0.011	3	887	0.052	3	887	0.063
18:00-19:00	2	1025	0.027	2	1025	0.031	2	1025	0.058
19:00-20:00									
20:00-21:00									
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			1.299			1.243			2.542

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
610-1200 (units:)
Survey date date range:
01/01/00-25/11/09
Number of weekdays (Monday-Friday):
3
Number of Saturdays: 0
Number of Sundays: 0
Surveys manually removed from selection: 1
This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

2014 -> 2020 PM Peak: x 1.0637

APPENDIX 13

MAYOR OF LONDON

APPENDIX 14

JOB REF: JOB NAME:	18420 HARROW					DATE: 20/01/2015 DAY: TUESDAY			
TIME	ZONE								
	1		2			3			
	STANDARD	ILLEGAL	STANDARD	DISABLED	ILLEGAL	STANDARD	DISABLED	DROP OFF ONLY	ILLEGAL
TOTAL SPACES	28	N/A	64	3	N/A	10	2	N/A	N/A
7:00	0	0	1	0	0	0	0	0	0
7:15	0	0	1	0	0	0	0	0	0
7:30	1	0	2	0	0	4	1	0	0
7:45	0	0	4	0	0	8	2	3	0
8:00	5	0	4	0	0	8	2	1	0
8:15	11	0	7	0	0	10	2	1	0
8:30	22	5	20	0	0	10	2	4	0
8:45	28	5	64	3	0	10	2	6	0
9:00	24	3	40	1	0	10	1	2	0
9:15	23	0	28	1	0	10	1	0	0
9:30	23	0	28	1	0	9	0	1	0
9:45	23	1	28	1	0	9	0	1	0
10:00	24	1	28	1	0	8	0	1	0
15:00	28	5	64	2	6	10	2	3	0
15:15	28	5	64	3	8	10	2	4	0
15:30	28	5	50	1	0	10	2	4	0
15:45	24	2	20	1	0	9	0	0	0
16:00	22	1	19	1	0	9	0	0	0
16:15	28	5	16	1	0	9	1	4	0
16:30	25	2	14	1	0	4	0	4	0
16:45	17	1	11	1	0	4	0	3	0
17:00	14	1	9	1	0	4	0	2	0
17:15	11	1	5	1	0	2	0	3	0
17:30	11	1	4	1	0	3	0	4	0
17:45	9	0	4	1	0	1	0	3	0
18:00	2	0	0	0	0	0	0	1	0

NOTE: THE VEHICLES PARKED ILLEGALLY IN ZONE 1, PARKED IN AN AREA RESERVED FOR COACH PARKING.
(NO COACHES WERE OBSEREVD, ONLY CARS USED THIS AREA WHICH COULD HOLD APPROXIMATELY 5 CARS),
the Vehicles parked illegally in zone 2 Were not parked in designated bays
three police officers were on site between 14:55 TO 15:55 MOVING ON VEHICLES WHICH WERE PARKED ILLEGALLY.

APPENDIX 15

Period and School Activity		Surveyed Spare Capacity in Public Car Park	Committed Parking Demand (Whichurch Schools Expansion) *	No. AHFS Pupils Arrive / Depart	TRICS Derived AHFS Parking Accumulation**	Resultant Spare Capacity
AM PEAK						
07:00-07:15	AHFS Breakfast Club	101	0	30	6	95
07:15-07:30		44	0	110	21	23
07:30-07:45	AHFS KS4 Start	95	0	240	45	50
07:45-08:00		90	0	130	25	65
08:00-08:15	AHFS KS3 Start	85	0	390	74	11
08:15-08:30		74	0	0	0	74
08:30-08:45	Whitchurch Drop-Off	50	54	0	0	-4
08:45-09:00	Whitchurch Drop-Off	0	54	0	0	-54
0900-09:15		58	0	0	0	58
09:15-09:30		41	0	90	17	24
09:30-09:45	AHFS KS5 Start	42	0	270	51	-9
09:45-10:00		42	0	0	0	42
PM PEAK						
15:00-15:15	Whitchurch Pick-Up	0	54	0	0	-54
15:15-15:30	Whitchurch Pick-Up	0	54	0	0	-54
15:30-15:45		14	0	50	6	8
15:45-16:00	AHFS KS3\&4 Finish	49	0	350	43	6
16:00-16:15		52	0	0	0	52
16:15-16:30		49	0	0	0	49
16:30-16:45		59	0	125	16	44
16:45-17:00	AHFS KS3/4 Clubs Finish	70	0	375	47	24
17:00-17:15		75	0	0	0	75
17:15-17:30		84	0	90	11	73
17:30-17:45	AHFS KS5 Finish	84	0	270	33	51

Notes:

* Committed Whitchurch Schools expansion vehicle trip generation taken from approved Mott MacDonalds Transport Assessment (March 2014)
** AHFS Parking accumulation derived from total TRICS vehicle arrival / departure trip rates over AM / PM periods (broken down by start / finish times - assumed 75% pupils arrive/exit school in 15 minutes before or after school start/ finish time. 25% pupils arrive/exit school 15-30 minutes before or after school start/ finish time).

APPENDIX 17

APPENDIX 18

APPENDIX 19

MTP Results Summary
MTP Results Summary

User and Project Details

Project:	
Title:	
Location:	2015-06 Whitchurch Lane - Wemborough Road - Honeypot Lane - Marsh Lane MITIGATION V2 14-042.Isg3x
File name:	
Author:	
Company:	
Address:	
Notes:	

Phase Diagram

MTP Results Summary
Phase Input Data

Phase Name	Phase Type	Assoc. Phase	Street Min	Cont Min
A	Traffic		7	7
B	Traffic		7	7
C	Traffic		7	7
D	Traffic		7	7
E	Pedestrian		7	7
F	Pedestrian		7	7
G	Pedestrian		7	7
H	Pedestrian		7	7

Phase Intergreens Matrix

Stage Diagram

Phase Delays

Term. Stage	Start Stage	Phase	Type	Value	Cont value

There are no Phase Delays defined

MTP Results Summary
Scenario 1: 'AM Peak Base + CD + Dev' (FG2: 'PM Peak Base + CD + Dev', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

MTP Results Summary
Lane Input Data

Junction: Unnamed Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Whitchurch Lane)	U	D	2	3	60.0	Geom	-	2.50	0.00	Y	Arm 6 Left Arm 7 Ahead	$\begin{gathered} 10.70 \\ \text { Inf } \end{gathered}$
1/2 (Whitchurch Lane)	0	D	2	3	7.0	Geom	-	2.80	0.00	N	Arm 8 Right	21.80
2/1 (Honeypot Lane)	U	B	2	3	5.0	Geom	-	3.00	0.00	Y	$\begin{gathered} \text { Arm } 7 \\ \text { Left } \end{gathered}$	14.50
$\begin{gathered} \text { 2/2 } \\ \begin{array}{c} \text { Honeypot } \\ \text { Lane) } \end{array} \end{gathered}$	U	B	2	3	60.0	Geom	-	3.00	0.00	N	Arm 8 Ahead	Inf
$2 / 3$											Arm 5 Right	16.90
Lane)											Arm 8 Ahead	Inf
$3 / 1$											Arm 5 Ahead	Inf
Road)											Arm 8 Left	18.00
$3 / 2$ (Wemborough Road)	0	C	2	3	3.0	Geom	-	2.60	0.00	N	Arm 6 Right	20.10
4/1				3	60.0		-			Y	Arm 5 Left	26.50
(Marsh Lane)											Arm 6 Ahead	
$4 / 2$											Arm 6 Ahead	Inf
(Marsh Lane)											Arm 7 Right	18.40
5/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/2	U		2	3	60.0	Inf	-	-	-	-	-	-
7/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/2	U		2	3	60.0	Inf	-	-	-	-	-	-

MTP Results Summary
Give-Way Lane Input Data

Junction: Unnamed Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	NonBlocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
1/2 (Whitchurch Lane)	8/1 (Right)	1439	0	3/1	1.09	All	2.00	-	0.50	2	2.00
	8/2 (Right)	1439	0	3/1	1.09	All					
$\begin{gathered} 3 / 2 \\ \text { (Wemborough } \\ \text { Road) } \end{gathered}$	6/1 (Right)	1439	0	1/1	1.09	All	2.00	-	0.50	2	2.00
	6/2 (Right)	1439	0	1/1	1.09	All					

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
2: 'PM Peak Base + CD + Dev'	$16: 15$	$17: 15$	$01: 00$	

Traffic Flows, Actual
Actual Flow :

	Destination					
Origin		A	B	C	D	Tot.
	A	0	152	388	70	610
	B	238	0	147	397	782
	C	506	144	0	89	739
	D	125	550	186	0	861
	Tot.	869	846	721	556	2992

MTP Results Summary

Network Results

Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	$\begin{aligned} & \text { Deg } \\ & \text { Sat } \\ & \text { (\%) } \end{aligned}$	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	98.0\%	166	0	48	69.7	-
Unnamed Junction	-	-	-		-	-	-	-	-	-	98.0\%	166	0	48	69.7	-
1/1	Whitchurch Lane Left Ahead	U	D		1	41	-	540	1794	685	78.8\%	-	-	-	6.3	16.4
1/2	Whitchurch Lane Right	0	D		1	41	-	70	1904	121	58.0\%	70	0	0	1.6	2.0
2/2+2/1	Honeypot Lane Left Ahead	U	B		1	20	-	437	2055:1735	304+154	$\begin{aligned} & 95.5: \\ & 95.5 \% \end{aligned}$	-	-	-	11.7	17.1
2/3	Honeypot Lane Right Ahead	U	B		1	20	-	345	1936	370	93.3\%	-	-	-	9.2	15.3
3/1	Wemborough Road Ahead Left	U	C		1	41	-	595	1852	707	84.1\%	-	-	-	7.7	19.1
3/2	Wemborough Road Right	O	C		1	41	-	144	1875	147	98.0\%	97	0	47	7.4	9.7
4/1	Marsh Lane Left Ahead	U	A		1	24	-	418	1893	430	97.2\%	-	-	-	12.5	20.3
4/2	Marsh Lane Ahead Right	U	A		1	24	-	443	1997	454	97.6\%	-	-	-	13.3	21.6
C1				PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):			$\begin{array}{r} -8.9 \\ -8.9 \end{array}$	Total Delay for Signalled Lanes (pcuHr) Total Delay Over All Lanes(pcuHr)			69.68 Cycle Time (s): 11069.68					

MTP Results Summary
Network Layout Diagram

Scenario 2: 'PM Peak Base + CD + Dev' (FG2: 'PM Peak Base + CD + Dev', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

MTP Results Summary
Lane Input Data

Junction: Unnamed Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Whitchurch Lane)	U	D	2	3	60.0	Geom	-	2.50	0.00	Y	Arm 6 Left Arm 7 Ahead	$\begin{gathered} 10.70 \\ \text { Inf } \end{gathered}$
1/2 (Whitchurch Lane)	0	D	2	3	7.0	Geom	-	2.80	0.00	N	Arm 8 Right	21.80
2/1 (Honeypot Lane)	U	B	2	3	5.0	Geom	-	3.00	0.00	Y	$\begin{gathered} \text { Arm } 7 \\ \text { Left } \end{gathered}$	14.50
$\begin{gathered} \text { 2/2 } \\ \begin{array}{c} \text { Honeypot } \\ \text { Lane) } \end{array} \end{gathered}$	U	B	2	3	60.0	Geom	-	3.00	0.00	N	Arm 8 Ahead	Inf
$2 / 3$											Arm 5 Right	16.90
Lane)											Arm 8 Ahead	Inf
$3 / 1$											Arm 5 Ahead	Inf
Road)											Arm 8 Left	18.00
$3 / 2$ (Wemborough Road)	0	C	2	3	3.0	Geom	-	2.60	0.00	N	Arm 6 Right	20.10
4/1				3	60.0		-			Y	Arm 5 Left	26.50
(Marsh Lane)											Arm 6 Ahead	
$4 / 2$											Arm 6 Ahead	Inf
(Marsh Lane)											Arm 7 Right	18.40
5/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1	U		2	3	60.0	Inf	-	-	-	-	-	-
6/2	U		2	3	60.0	Inf	-	-	-	-	-	-
7/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1	U		2	3	60.0	Inf	-	-	-	-	-	-
8/2	U		2	3	60.0	Inf	-	-	-	-	-	-

MTP Results Summary
Give-Way Lane Input Data

Junction: Unnamed Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	NonBlocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
1/2 (Whitchurch Lane)	8/1 (Right)	1439	0	3/1	1.09	All	2.00	-	0.50	2	2.00
	8/2 (Right)	1439	0	3/1	1.09	All					
$\begin{gathered} 3 / 2 \\ \text { (Wemborough } \\ \text { Road) } \end{gathered}$	6/1 (Right)	1439	0	1/1	1.09	All	2.00	-	0.50	2	2.00
	6/2 (Right)	1439	0	1/1	1.09	All					

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
2: 'PM Peak Base + CD + Dev'	$16: 15$	$17: 15$	$01: 00$	

Traffic Flows, Actual
Actual Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	129	366	86	581	
	C	207	0	225	396	828	
	C	631	182	0	103	716	
	Dot.	704	693	687	585	2669	

MTP Results Summary

Network Results

Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	$\begin{aligned} & \text { Deg } \\ & \text { Sat } \\ & \text { (\%) } \end{aligned}$	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	87.1\%	243	0	25	40.7	-
Unnamed Junction	-	-	-		-	-	-	-	-	-	87.1\%	243	0	25	40.7	-
1/1	Whitchurch Lane Left Ahead	U	D		1	41	-	495	1799	727	68.1\%	-	-	-	4.6	12.7
1/2	Whitchurch Lane Right	0	D		1	41	-	86	1904	189	45.4\%	86	0	0	1.4	1.9
2/2+2/1	Honeypot Lane Left Ahead	U	B		1	22	-	490	2055:1735	$311+264$	$\begin{aligned} & 85.2 \text { : } \\ & 85.2 \% \end{aligned}$	-	-	-	7.7	11.7
2/3	Honeypot Lane Right Ahead	U	B		1	22	-	338	1949	431	78.4\%	-	-	-	5.3	10.9
3/1	Wemborough Road Ahead Left	U	C		1	41	-	534	1845	745	71.7\%	-	-	-	5.1	14.2
3/2	Wemborough Road Right	0	C		1	41	-	182	1875	209	87.1\%	157	0	25	5.0	7.9
4/1	Marsh Lane Left Ahead	U	A		1	16	-	263	1898	310	84.8\%	-	-	-	5.6	9.8
4/2	Marsh Lane Ahead Right	U	A		1	16	-	281	2009	328	85.6\%	-	-	-	6.0	10.5
C1				PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):			$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr) Total Delay Over All Lanes(pcuHr)			40.7240.72 Cycle Time (s): 104					

MTP Results Summary
Network Layout Diagram

[^0]: For further information, contact: GLA Planning Unit (Development \& Projects Team):
 Colin Wilson, Senior Manager - Planning Decisions
 02079834271 email; colin.wilson@london.gov.uk
 Samantha Wells, Principal Strategic Planner
 02079834266 email: samantha.wells@london.gov.uk
 Tefera Tibebe, Case Officer
 02079834312 email: tefera.tibebe@london.gov.uk

